Suppr超能文献

针对脑胶质瘤的亚细胞热休克蛋白 90 网络的全球靶向治疗。

Global targeting of subcellular heat shock protein-90 networks for therapy of glioblastoma.

机构信息

Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.

出版信息

Mol Cancer Ther. 2010 Jun;9(6):1638-46. doi: 10.1158/1535-7163.MCT-10-0097. Epub 2010 May 25.

Abstract

Drug discovery for complex and heterogeneous tumors now aims at dismantling global networks of disease maintenance, but the subcellular requirements of this approach are not understood. Here, we simultaneously targeted the multiple subcellular compartments of the molecular chaperone heat shock protein-90 (Hsp90) in a model of glioblastoma, a highly lethal human malignancy in urgent need of fresh therapeutic strategies. Treatment of cultured or patient-derived glioblastoma cells with Shepherdin, a dual peptidomimetic inhibitor of mitochondrial and cytosolic Hsp90, caused irreversible collapse of mitochondria, degradation of Hsp90 client proteins in the cytosol, and tumor cell killing by apoptosis and autophagy. Stereotactic or systemic delivery of Shepherdin was well tolerated and suppressed intracranial glioma growth via inhibition of cell proliferation, induction of apoptosis, and reduction of angiogenesis in vivo. These data show that disabling Hsp90 cancer networks in their multiple subcellular compartments improves strategies for drug discovery and may provide novel molecular therapy for highly recalcitrant human tumors.

摘要

目前,针对复杂且异质性肿瘤的药物研发旨在瓦解疾病维持的全球网络,但这种方法的亚细胞需求尚不清楚。在这里,我们在胶质母细胞瘤模型中同时靶向分子伴侣热休克蛋白 90(Hsp90)的多个亚细胞区室,这是一种高度致命的人类恶性肿瘤,迫切需要新的治疗策略。用双重肽模拟物抑制剂 Shepherd 处理培养或源自患者的胶质母细胞瘤细胞,可导致线粒体不可逆崩溃、细胞质中 Hsp90 客户蛋白降解以及通过细胞凋亡和自噬杀死肿瘤细胞。立体定向或系统给予 Shepherd 可耐受良好,并通过抑制细胞增殖、诱导细胞凋亡和减少体内血管生成来抑制颅内神经胶质瘤生长。这些数据表明,在其多个亚细胞区室中使 Hsp90 癌症网络失活可改善药物发现策略,并可为高度难治性人类肿瘤提供新的分子治疗方法。

相似文献

1
Global targeting of subcellular heat shock protein-90 networks for therapy of glioblastoma.
Mol Cancer Ther. 2010 Jun;9(6):1638-46. doi: 10.1158/1535-7163.MCT-10-0097. Epub 2010 May 25.
2
Antileukemic activity of shepherdin and molecular diversity of hsp90 inhibitors.
J Natl Cancer Inst. 2006 Aug 2;98(15):1068-77. doi: 10.1093/jnci/djj300.
3
Inhibition of the mitochondrial Hsp90 chaperone network: a novel, efficient treatment strategy for cancer?
Cancer Lett. 2013 Jun 10;333(2):133-46. doi: 10.1016/j.canlet.2013.01.045. Epub 2013 Jan 31.
4
Inhibition of Mitochondrial Matrix Chaperones and Antiapoptotic Bcl-2 Family Proteins Empower Antitumor Therapeutic Responses.
Cancer Res. 2017 Jul 1;77(13):3513-3526. doi: 10.1158/0008-5472.CAN-16-3424. Epub 2017 May 18.
6
Heat shock protein 60 regulation of the mitochondrial permeability transition pore in tumor cells.
Cancer Res. 2010 Nov 15;70(22):8988-93. doi: 10.1158/0008-5472.CAN-10-2225. Epub 2010 Oct 26.
8
DCZ5248, a novel dual inhibitor of Hsp90 and autophagy, exerts antitumor activity against colon cancer.
Acta Pharmacol Sin. 2021 Jan;42(1):132-141. doi: 10.1038/s41401-020-0398-2. Epub 2020 May 13.
9
Effective targeting of triple-negative breast cancer cells by PF-4942847, a novel oral inhibitor of Hsp 90.
Clin Cancer Res. 2011 Aug 15;17(16):5432-42. doi: 10.1158/1078-0432.CCR-11-0592. Epub 2011 Jun 29.

引用本文的文献

1
Targeting Heat Shock Proteins in Malignant Brain Tumors: From Basic Research to Clinical Trials.
Cancers (Basel). 2022 Nov 4;14(21):5435. doi: 10.3390/cancers14215435.
3
The Mitochondrial Chaperone TRAP1 as a Candidate Target of Oncotherapy.
Front Oncol. 2021 Jan 26;10:585047. doi: 10.3389/fonc.2020.585047. eCollection 2020.
4
Immunotherapy with heat shock protein 96 to treat gliomas.
Chin Neurosurg J. 2020 Sep 3;6:31. doi: 10.1186/s41016-020-00211-3. eCollection 2020.
6
The HSP90 Family: Structure, Regulation, Function, and Implications in Health and Disease.
Int J Mol Sci. 2018 Aug 29;19(9):2560. doi: 10.3390/ijms19092560.
7
TRAP1 Regulation of Cancer Metabolism: Dual Role as Oncogene or Tumor Suppressor.
Genes (Basel). 2018 Apr 5;9(4):195. doi: 10.3390/genes9040195.
8
Personalized anticancer therapy selection using molecular landscape topology and thermodynamics.
Oncotarget. 2017 Mar 21;8(12):18735-18745. doi: 10.18632/oncotarget.12932.
9
Advances in HSP27 and HSP90-targeting strategies for glioblastoma.
J Neurooncol. 2016 Apr;127(2):209-19. doi: 10.1007/s11060-016-2070-8. Epub 2016 Feb 2.
10
A bombesin-shepherdin radioconjugate designed for combined extra- and intracellular targeting.
Pharmaceuticals (Basel). 2014 May 27;7(6):662-75. doi: 10.3390/ph7060662.

本文引用的文献

2
Advances in the genetics of glioblastoma: are we reaching critical mass?
Nat Rev Neurol. 2009 Aug;5(8):419-26. doi: 10.1038/nrneurol.2009.96. Epub 2009 Jul 14.
3
Phase 2 trial of erlotinib plus sirolimus in adults with recurrent glioblastoma.
J Neurooncol. 2010 Jan;96(2):219-30. doi: 10.1007/s11060-009-9950-0. Epub 2009 Jun 28.
5
p53-mediated inhibition of angiogenesis in diffuse low-grade astrocytomas.
Neurochem Int. 2009 Jun;54(7):458-63. doi: 10.1016/j.neuint.2009.01.016. Epub 2009 Feb 6.
6
Principles of cancer therapy: oncogene and non-oncogene addiction.
Cell. 2009 Mar 6;136(5):823-37. doi: 10.1016/j.cell.2009.02.024.
7
Acquired resistance to 17-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin) in glioblastoma cells.
Cancer Res. 2009 Mar 1;69(5):1966-75. doi: 10.1158/0008-5472.CAN-08-3131. Epub 2009 Feb 24.
8
Combinatorial drug design targeting multiple cancer signaling networks controlled by mitochondrial Hsp90.
J Clin Invest. 2009 Mar;119(3):454-64. doi: 10.1172/JCI37613. Epub 2009 Feb 23.
9
Translating biology into clinic: the case of glioblastoma.
Curr Opin Cell Biol. 2009 Apr;21(2):311-6. doi: 10.1016/j.ceb.2008.12.009. Epub 2009 Feb 14.
10
Autophagy pathways in glioblastoma.
Methods Enzymol. 2009;453:273-86. doi: 10.1016/S0076-6879(08)04013-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验