Suppr超能文献

高海拔对人体骨骼肌能量代谢的影响:来自考德威尔极限珠峰探险的 P-MRS 研究结果。

The effect of high-altitude on human skeletal muscle energetics: P-MRS results from the Caudwell Xtreme Everest expedition.

机构信息

Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire, United Kingdom.

出版信息

PLoS One. 2010 May 19;5(5):e10681. doi: 10.1371/journal.pone.0010681.

Abstract

Many disease states are associated with regional or systemic hypoxia. The study of healthy individuals exposed to high-altitude hypoxia offers a way to explore hypoxic adaptation without the confounding effects of disease and therapeutic interventions. Using (31)P magnetic resonance spectroscopy and imaging, we investigated skeletal muscle energetics and morphology after exposure to hypobaric hypoxia in seven altitude-naïve subjects (trekkers) and seven experienced climbers. The trekkers ascended to 5300 m while the climbers ascended above 7950 m. Before the study, climbers had better mitochondrial function (evidenced by shorter phosphocreatine recovery halftime) than trekkers: 16+/-1 vs. 22+/-2 s (mean +/- SE, p<0.01). Climbers had higher resting [Pi] than trekkers before the expedition and resting [Pi] was raised across both groups on their return (PRE: 2.6+/-0.2 vs. POST: 3.0+/-0.2 mM, p<0.05). There was significant muscle atrophy post-CXE (PRE: 4.7+/-0.2 vs. POST: 4.5+/-0.2 cm(2), p<0.05), yet exercising metabolites were unchanged. These results suggest that, in response to high altitude hypoxia, skeletal muscle function is maintained in humans, despite significant atrophy.

摘要

许多疾病状态与局部或全身缺氧有关。研究健康个体暴露于高海拔低氧环境,可以在没有疾病和治疗干预的混杂影响的情况下,探索低氧适应。使用 31P 磁共振波谱和成像,我们研究了 7 名高原初体验者(徒步旅行者)和 7 名经验丰富的登山者暴露于低压低氧后的骨骼肌能量代谢和形态。徒步旅行者上升到 5300 米,而登山者上升到 7950 米以上。在研究之前,登山者的线粒体功能(表现为磷酸肌酸恢复半衰期更短)优于徒步旅行者:16+/-1 比 22+/-2 秒(平均值+/-SE,p<0.01)。登山者在探险前的静息 [Pi] 高于徒步旅行者,并且两组在返回时静息 [Pi] 都升高(PRE:2.6+/-0.2 比 POST:3.0+/-0.2 mM,p<0.05)。暴露于高海拔低氧后,肌肉明显萎缩(PRE:4.7+/-0.2 比 POST:4.5+/-0.2 cm2,p<0.05),但运动代谢物没有变化。这些结果表明,在高海拔低氧环境下,尽管存在明显的萎缩,人类的骨骼肌功能仍能得到维持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68e9/2873292/06a5af934372/pone.0010681.g001.jpg

相似文献

3
Caudwell Xtreme Everest: An Overview.
Adv Exp Med Biol. 2016;903:427-37. doi: 10.1007/978-1-4899-7678-9_28.
4
Caudwell Xtreme Everest: a field study of human adaptation to hypoxia.
Crit Care. 2007;11(4):151. doi: 10.1186/cc5921.
5
Caudwell xtreme Everest expedition.
High Alt Med Biol. 2010 Summer;11(2):133-7. doi: 10.1089/ham.2009.1093.
6
7
Changes in energy system contributions to the Wingate anaerobic test in climbers after a high altitude expedition.
Eur J Appl Physiol. 2020 Jul;120(7):1629-1636. doi: 10.1007/s00421-020-04392-8. Epub 2020 Jun 3.
8
Pupil dynamics in hypoxic conditions: Caudwell Xtreme Everest results.
High Alt Med Biol. 2014 Sep;15(3):422-3. doi: 10.1089/ham.2014.1012. Epub 2014 Sep 11.
9
Acclimatization of skeletal muscle mitochondria to high-altitude hypoxia during an ascent of Everest.
FASEB J. 2012 Apr;26(4):1431-41. doi: 10.1096/fj.11-197772. Epub 2011 Dec 20.
10
Effects of a 21-day expedition to 6,194 m on human skeletal muscle SR Ca2+-ATPase.
High Alt Med Biol. 2000 Winter;1(4):301-10. doi: 10.1089/15270290050502372.

引用本文的文献

4
Mining Potential Drug Targets and Constructing Diagnostic Models for Heart Failure Based on miRNA-mRNA Networks.
Mediators Inflamm. 2022 Sep 27;2022:9652169. doi: 10.1155/2022/9652169. eCollection 2022.
5
Neuromuscular fatigability at high altitude: Lowlanders with acute and chronic exposure, and native highlanders.
Acta Physiol (Oxf). 2022 Apr;234(4):e13788. doi: 10.1111/apha.13788. Epub 2022 Jan 25.
6
Population History and Altitude-Related Adaptation in the Sherpa.
Front Physiol. 2019 Aug 28;10:1116. doi: 10.3389/fphys.2019.01116. eCollection 2019.
7
Adaptive remodeling of skeletal muscle energy metabolism in high-altitude hypoxia: Lessons from AltitudeOmics.
J Biol Chem. 2018 May 4;293(18):6659-6671. doi: 10.1074/jbc.RA117.000470. Epub 2018 Mar 14.
10
Oxidative protein modification alters proteostasis under acute hypobaric hypoxia in skeletal muscles: a comprehensive in vivo study.
Cell Stress Chaperones. 2017 May;22(3):429-443. doi: 10.1007/s12192-017-0795-8. Epub 2017 Apr 19.

本文引用的文献

2
Caudwell Xtreme Everest: a field study of human adaptation to hypoxia.
Crit Care. 2007;11(4):151. doi: 10.1186/cc5921.
5
Exercise economy does not change after acclimatization to moderate to very high altitude.
Scand J Med Sci Sports. 2007 Jun;17(3):281-91. doi: 10.1111/j.1600-0838.2006.00530.x.
6
Body mass regulation at altitude.
Eur J Gastroenterol Hepatol. 2006 Jan;18(1):1-3. doi: 10.1097/00042737-200601000-00001.
7
Ghrelin and leptin levels of sojourners and acclimatized lowlanders at high altitude.
Nutr Neurosci. 2005 Jun;8(3):161-5. doi: 10.1080/10284150500132823.
8
Some factors determining the PCr recovery overshoot in skeletal muscle.
Biophys Chem. 2005 Jul 1;116(2):129-36. doi: 10.1016/j.bpc.2005.03.004. Epub 2005 Apr 21.
9
Myoglobin content and enzymatic activity of muscle and altitude adaptation.
J Appl Physiol. 1962 Mar;17:301-5. doi: 10.1152/jappl.1962.17.2.301.
10
BASAL METABOLISM AND RESPIRATION IN MEN LIVING AT 5,800 M (19,000 FT).
J Appl Physiol. 1964 Sep;19:949-54. doi: 10.1152/jappl.1964.19.5.949.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验