Suppr超能文献

将资源利用和温度纳入河流细菌生产力代谢比例的研究中。

Integrating resource utilization and temperature in metabolic scaling of riverine bacterial production.

机构信息

Biology Department, University of New Mexico, Albuquerque, New Mexico 87131, USA.

出版信息

Ecology. 2010 May;91(5):1455-65. doi: 10.1890/08-2192.1.

Abstract

The study of metabolic scaling in stream ecosystems is complicated by their openness to external resource inputs. For heterotrophic bacteria, which are a large component of stream metabolism, it may be possible to integrate the effects of resource availability and temperature on production using metabolic scaling theory and the kinetics of extracellular enzyme activity (EEA) associated with the degradation of major nutrient pools. With this goal, we analyzed previously published data on EEA and bacterial production for two rivers in northwestern Ohio, USA. The EEA data included estimates of apparent Vmax, a measure of catalytic capacity, and apparent Km, a measure of available substrate concentration, for six extracellular enzymes (alpha-glucosidase, beta-glucosidase, aminopeptidase, protease, phosphatase, and acetyl esterase). Sampling was done over an annual cycle with a temperature range of 4 31 degrees C, while EEA assays were conducted at 20 degrees C. The EEA kinetic measures were scaled to ambient stream temperature using an activation energy (Ea) of 0.5 eV (8.01 x 10(-20) J) and converted to estimates of the turnover rate (St) of their associated substrate pools. The St values associated with protein utilization, the largest substrate pool, had the strongest relationship to bacterial production (r2 = 0.49-0.52); those for carbohydrate utilization, the smallest substrate pool, had the weakest (r2= 0.09-0.15). Comparisons of apparent Ea over the annual cycle showed that the trophic basis of bacterial production switched from relatively high carbohydrate consumption in autumn and winter to relatively high protein consumption in spring and summer, corresponding to seasonal dynamics in plant litter inputs and algal production, respectively. Over the annual cycle, the summed substrate generation rate of the six enzymes was similar in magnitude and strongly correlated with bacterial production (r2 = 0.56). This approach combines effects of substrate pool size, catalytic capacity, and temperature on bacterial production and could be used to compare ecosystems along latitudinal gradients where resource, rather than temperature, effects on metabolic scaling are of greater magnitude.

摘要

河流生态系统的代谢缩放研究受到外部资源输入的影响而变得复杂。对于异养细菌,它们是河流代谢的重要组成部分,可能可以使用代谢缩放理论和与主要营养物质池降解相关的细胞外酶活性(EEA)的动力学来整合资源可用性和温度对生产的影响。有鉴于此,我们分析了美国俄亥俄州西北部两条河流的先前发表的关于 EEA 和细菌生产的数据。EEA 数据包括六种细胞外酶(α-葡萄糖苷酶、β-葡萄糖苷酶、氨肽酶、蛋白酶、磷酸酶和乙酰酯酶)的表观 Vmax(衡量催化能力的指标)和表观 Km(衡量可用底物浓度的指标)的估计值。采样是在一年的周期内进行的,温度范围为 4-31°C,而 EEA 测定是在 20°C 下进行的。使用 0.5eV(8.01×10^(-20)J)的活化能(Ea)将 EEA 动力学测量值缩放为环境溪流温度,并将其转换为相关底物池的周转率(St)的估计值。与蛋白质利用相关的 St 值(最大的底物池)与细菌生产的关系最强(r2=0.49-0.52);与碳水化合物利用相关的 St 值(最小的底物池)的关系最弱(r2=0.09-0.15)。对全年的表观 Ea 的比较表明,细菌生产的营养基础从秋季和冬季相对较高的碳水化合物消耗转变为春季和夏季相对较高的蛋白质消耗,分别对应于植物凋落物输入和藻类生产的季节性动态。在全年的周期中,六种酶的总和底物产生速率在数量上相似,并与细菌生产密切相关(r2=0.56)。这种方法结合了底物池大小、催化能力和温度对细菌生产的影响,可用于比较沿纬度梯度的生态系统,其中资源而不是温度对代谢缩放的影响更为重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验