Welter Jill R, Benstead Jonathan P, Cross Wyatt F, Hood James M, Huryn Alexander D, Johnson Philip W, Williamson Tanner J
Ecology. 2015 Mar;96(3):603-10. doi: 10.1890/14-1667.1.
Variation in resource supply can cause variation in temperature dependences of metabolic processes (e.g., photosynthesis and respiration). Understanding such divergence is particularly important when using metabolic theory to predict ecosystem responses to climate warming. Few studies, however, have assessed the effect of temperature-resource interactions on metabolic processes, particularly in cases where the supply of limiting resources exhibits temperature dependence. We investigated the responses of biomass accrual, gross primary production (GPP), community respiration (CR), and N2 fixation to warming during biofilm development in a streamside channel experiment. Areal rates of GPP, CR, biomass accrual, and N2 fixation scaled positively with temperature, showing a 32- to 71-fold range across the temperature gradient (approximately 7 degrees-24 degrees C). Areal N2-fixation rates exhibited apparent activation energies (1.5-2.0 eV; 1 eV = approximately 1.6 x 10(-19) J) approximating the activation energy of the nitrogenase reaction. In contrast, mean apparent activation energies for areal rates of GPP (2.1-2.2 eV) and CR (1.6-1.9 eV) were 6.5- and 2.7-fold higher than estimates based on metabolic theory predictions (i.e., 0.32 and 0.65 eV, respectively) and did not significantly differ from the apparent activation energy observed for N2 fixation. Mass-specific activation energies for N2 fixation (1.4-1.6 eV), GPP (0.3-0.5 eV), and CR (no observed temperature relationship) were near or lower than theoretical predictions. We attribute the divergence of areal activation energies from those predicted by metabolic theory to increases in N2 fixation with temperature, leading to amplified temperature dependences of biomass accrual and areal rates of GPP and R. Such interactions between temperature dependences must be incorporated into metabolic models to improve predictions of ecosystem responses to climate change.
资源供应的变化会导致代谢过程(如光合作用和呼吸作用)的温度依赖性发生变化。在运用代谢理论预测生态系统对气候变暖的响应时,理解这种差异尤为重要。然而,很少有研究评估温度 - 资源相互作用对代谢过程的影响,特别是在限制资源供应呈现温度依赖性的情况下。我们在溪边渠道实验中,研究了生物膜发育过程中生物量积累、总初级生产力(GPP)、群落呼吸(CR)和固氮作用对升温的响应。GPP、CR、生物量积累和固氮作用的面积速率与温度呈正相关,在温度梯度(约7摄氏度 - 24摄氏度)范围内变化了32至71倍。面积固氮速率表现出的表观活化能(1.5 - 2.0电子伏特;1电子伏特≈1.6×10⁻¹⁹焦耳)接近固氮酶反应的活化能。相比之下,GPP面积速率(2.1 - 2.2电子伏特)和CR面积速率(1.6 - 1.9电子伏特)的平均表观活化能分别比基于代谢理论预测的估计值(即分别为0.32和0.65电子伏特)高6.5倍和2.7倍,且与固氮作用观察到的表观活化能没有显著差异。固氮作用(1.4 - 1.6电子伏特)、GPP(0.3 - 0.5电子伏特)和CR(未观察到温度关系)的质量比活化能接近或低于理论预测值。我们将面积活化能与代谢理论预测值的差异归因于固氮作用随温度增加,导致生物量积累以及GPP和R面积速率的温度依赖性增强。这种温度依赖性之间的相互作用必须纳入代谢模型,以改善对生态系统气候变化响应的预测。