Suppr超能文献

肠外铁制剂对单核细胞趋化蛋白 1、血红素氧合酶 1 和中性粒细胞明胶酶相关载脂蛋白基因表达及肾脏损伤反应有差异影响。

Parenteral iron formulations differentially affect MCP-1, HO-1, and NGAL gene expression and renal responses to injury.

机构信息

Department of Medicine, University of Washington, Fred Hutchinson Cancer Research Center, Seattle, USA.

出版信息

Am J Physiol Renal Physiol. 2010 Aug;299(2):F426-35. doi: 10.1152/ajprenal.00248.2010. Epub 2010 May 26.

Abstract

Despite their prooxidant effects, ferric iron compounds are routinely administered to patients with renal disease to correct Fe deficiency. This study assessed relative degrees to which three clinically employed Fe formulations [Fe sucrose (FeS); Fe gluconate (FeG); ferumoxytol (FMX)] impact renal redox- sensitive signaling, cytotoxicity, and responses to superimposed stress [endotoxin; glycerol-induced acute renal failure (ARF)]. Cultured human proximal tubule (HK-2) cells, isolated proximal tubule segments (PTS), or mice were exposed to variable, but equal, amounts of FeS, FeG, or FMX. Oxidant-stimulated signaling was assessed by heme oxygenase-1 (HO-1) or monocyte chemoattractant protein (MCP)-1 mRNA induction. Cell injury was gauged by MTT assay (HK-2 cells), %LDH release (PTS), or renal cortical neutrophil gelatinase-associated lipoprotein (NGAL) protein/mRNA levels. Endotoxin sensitivity and ARF severity were assessed by TNF-alpha and blood urea nitrogen concentrations, respectively. FeS and FeG induced lethal cell injury (in HK-2 cells, PTS), increased HO-1 and MCP-1 mRNAs (HK-2 cells; in vivo), and markedly raised plasma ( approximately 10 times), and renal cortical ( approximately 3 times) NGAL protein levels. Both renal and extrarenal (e.g., hepatic) NGAL production likely contributed to these results, based on assessments of tissue and HK-2 cell NGAL mRNA. FeS pretreatment exacerbated endotoxemia. However, it conferred marked protection against the glycerol model of ARF (halving azotemia). FMX appeared to be "bioneutral," as it exerted none of the above noted FeS/FeG effects. We conclude that 1) parenteral iron formulations that stimulate redox signaling can evoke cyto/nephrotoxicity; 2) secondary adaptive responses to this injury (e.g., HO-1/NGAL induction) can initiate a renal tubular cytoresistant state; this suggests a potential new clinical application for intravenous Fe therapy; and 3) FMX is bioneutral regarding these responses. The clinical implication(s) of the latter, vis a vis the treatment of Fe deficiency in renal disease patients, remains to be defined.

摘要

尽管三价铁化合物具有促氧化作用,但临床上仍常规用于治疗肾病患者的铁缺乏症。本研究评估了三种临床应用的铁制剂(蔗糖铁、葡萄糖酸铁和 ferumoxytol)对肾脏氧化还原敏感信号转导、细胞毒性以及对叠加应激(内毒素、甘油诱导的急性肾衰竭)的影响程度。培养的人近端肾小管(HK-2)细胞、分离的近端肾小管段(PTS)或小鼠暴露于不同但相等量的蔗糖铁、葡萄糖酸铁或 ferumoxytol。通过血红素加氧酶-1(HO-1)或单核细胞趋化蛋白-1(MCP-1)mRNA 诱导来评估氧化应激刺激的信号转导。通过 MTT 测定法(HK-2 细胞)、LDH 释放百分比(PTS)或肾皮质中性粒细胞明胶酶相关载脂蛋白(NGAL)蛋白/mRNA 水平来衡量细胞损伤。通过 TNF-α和血尿素氮浓度分别评估内毒素敏感性和急性肾衰竭严重程度。蔗糖铁和葡萄糖酸铁诱导致命细胞损伤(在 HK-2 细胞、PTS 中),增加 HO-1 和 MCP-1 mRNAs(HK-2 细胞;体内),并显著升高血浆(约 10 倍)和肾皮质(约 3 倍)NGAL 蛋白水平。基于组织和 HK-2 细胞 NGAL mRNA 的评估,肾脏和肾外(如肝)NGAL 产生可能促成了这些结果。蔗糖铁预处理加重了内毒素血症。然而,它对甘油诱导的急性肾衰竭模型有显著的保护作用(使氮血症减半)。Ferumoxytol 似乎是“生物中性的”,因为它没有表现出上述蔗糖铁/葡萄糖酸铁的作用。我们得出结论:1)刺激氧化还原信号的肠外铁制剂可引起细胞毒性/肾毒性;2)对这种损伤的继发适应性反应(例如,HO-1/NGAL 诱导)可引发肾小管细胞耐受力状态;这表明静脉铁治疗的一个新的临床应用潜力;3)Ferumoxytol 对这些反应呈生物中性。关于后者的临床意义(与肾病患者铁缺乏症的治疗有关)仍有待确定。

相似文献

1
Parenteral iron formulations differentially affect MCP-1, HO-1, and NGAL gene expression and renal responses to injury.
Am J Physiol Renal Physiol. 2010 Aug;299(2):F426-35. doi: 10.1152/ajprenal.00248.2010. Epub 2010 May 26.
2
Acute hepatic ischemic-reperfusion injury induces a renal cortical "stress response," renal "cytoresistance," and an endotoxin hyperresponsive state.
Am J Physiol Renal Physiol. 2014 Oct 1;307(7):F856-68. doi: 10.1152/ajprenal.00378.2014. Epub 2014 Jul 30.
3
Parenteral iron nephrotoxicity: potential mechanisms and consequences.
Kidney Int. 2004 Jul;66(1):144-56. doi: 10.1111/j.1523-1755.2004.00716.x.
4
Progressive histone alterations and proinflammatory gene activation: consequences of heme protein/iron-mediated proximal tubule injury.
Am J Physiol Renal Physiol. 2010 Mar;298(3):F827-37. doi: 10.1152/ajprenal.00683.2009. Epub 2009 Dec 23.
5
6
MCP-1 gene activation marks acute kidney injury.
J Am Soc Nephrol. 2011 Jan;22(1):165-75. doi: 10.1681/ASN.2010060641. Epub 2010 Nov 11.
7
Protective effects of neutrophil gelatinase-associated lipocalin on hypoxia/reoxygenation injury of HK-2 cells.
Transplant Proc. 2011 Dec;43(10):3622-7. doi: 10.1016/j.transproceed.2011.08.090.
9
Combined iron sucrose and protoporphyrin treatment protects against ischemic and toxin-mediated acute renal failure.
Kidney Int. 2016 Jul;90(1):67-76. doi: 10.1016/j.kint.2016.01.022. Epub 2016 Mar 24.
10
An evaluation of the antioxidant protein α1-microglobulin as a renal tubular cytoprotectant.
Am J Physiol Renal Physiol. 2016 Sep 1;311(3):F640-51. doi: 10.1152/ajprenal.00264.2016. Epub 2016 May 11.

引用本文的文献

2
The Impact of Intravenous Iron on Renal Injury and Function Markers in Patients With Chronic Kidney Disease and Iron Deficiency Without Anemia.
Kidney Int Rep. 2021 Nov 24;7(2):322-326. doi: 10.1016/j.ekir.2021.11.002. eCollection 2022 Feb.
3
Heme Burden and Ensuing Mechanisms That Protect the Kidney: Insights from Bench and Bedside.
Int J Mol Sci. 2021 Jul 30;22(15):8174. doi: 10.3390/ijms22158174.
8
Combined iron sucrose and protoporphyrin treatment protects against ischemic and toxin-mediated acute renal failure.
Kidney Int. 2016 Jul;90(1):67-76. doi: 10.1016/j.kint.2016.01.022. Epub 2016 Mar 24.
9
Low Serum Neutrophil Gelatinase-associated Lipocalin Level as a Marker of Malnutrition in Maintenance Hemodialysis Patients.
PLoS One. 2015 Jul 10;10(7):e0132539. doi: 10.1371/journal.pone.0132539. eCollection 2015.
10
The Labile Side of Iron Supplementation in CKD.
J Am Soc Nephrol. 2015 Nov;26(11):2612-9. doi: 10.1681/ASN.2015010052. Epub 2015 May 21.

本文引用的文献

2
Atherosclerosis: cell biology and lipoproteins.
Curr Opin Lipidol. 2009 Dec;20(6):528-9. doi: 10.1097/MOL.0b013e328332c3bc.
3
A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease.
N Engl J Med. 2009 Nov 19;361(21):2019-32. doi: 10.1056/NEJMoa0907845. Epub 2009 Oct 30.
5
Ferumoxytol for treatment of iron deficiency anemia in patients with chronic kidney disease.
Expert Opin Pharmacother. 2009 Oct;10(15):2563-8. doi: 10.1517/14656560903224998.
6
Uremia impacts renal inflammatory cytokine gene expression in the setting of experimental acute kidney injury.
Am J Physiol Renal Physiol. 2009 Oct;297(4):F961-70. doi: 10.1152/ajprenal.00381.2009. Epub 2009 Aug 5.
7
Ferumoxytol as an intravenous iron replacement therapy in hemodialysis patients.
Clin J Am Soc Nephrol. 2009 Feb;4(2):386-93. doi: 10.2215/CJN.02840608. Epub 2009 Jan 28.
8
Uremia induces proximal tubular cytoresistance and heme oxygenase-1 expression in the absence of acute kidney injury.
Am J Physiol Renal Physiol. 2009 Feb;296(2):F362-8. doi: 10.1152/ajprenal.90645.2008. Epub 2008 Nov 26.
9
Iron indices in chronic kidney disease in the National Health and Nutritional Examination Survey 1988-2004.
Clin J Am Soc Nephrol. 2009 Jan;4(1):57-61. doi: 10.2215/CJN.01670408. Epub 2008 Nov 5.
10
NGAL in acute kidney injury: from serendipity to utility.
Am J Kidney Dis. 2008 Sep;52(3):395-9. doi: 10.1053/j.ajkd.2008.07.008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验