Department of Pharmacology and Physiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07101-1709, USA.
Am J Physiol Cell Physiol. 2010 Aug;299(2):C230-9. doi: 10.1152/ajpcell.00077.2010. Epub 2010 May 26.
Nitric oxide (NO) plays a central role as a cellular signaling molecule in health and disease. In the heart, NO decreases the rate of spontaneous beating and the velocity and extent of shortening and accelerates the velocity of relengthening. Since the cationic amino acid l-arginine (l-Arg) is the substrate for NO production by NO synthases (NOS), we tested whether the transporters that mediate l-Arg import in cardiac muscle cells represent an intervention point in the regulation of NO synthesis. Electrical currents activated by l-Arg with low apparent affinity in whole cell voltage-clamped rat cardiomyocytes were found to be rapidly and reversibly inhibited by NO donors. Radiotracer uptake studies performed on cardiac sarcolemmal vesicles revealed the presence of high-affinity/low-capacity and low-affinity/high-capacity components of cationic amino acid transport that were inhibited by the NO donor S-nitroso-N-acetyl-dl-penicillamine. NO inhibited uptake in a noncompetitive manner with K(i) values of 275 and 827 nM for the high- and low-affinity component, respectively. Fluorescence spectroscopy experiments showed that millimolar concentrations of l-Arg initially promoted and then inhibited the release of endogenous NO in cardiomyocytes. Likewise, l-Arg currents measured in cardiac myocytes voltage clamped in the presence of 460 nM free intracellular Ca(2+), a condition in which a Ca-CaM complex should activate endogenous NO production, showed fast activation followed by inhibition of l-Arg transport. The NOS inhibitor N-nitro-l-arginine methyl ester, but not blockers of downstream reactions, specifically removed this inhibitory component. These results demonstrate that NO acutely regulates its own biosynthesis by modulating the availability of l-Arg via cationic amino acid transporters.
一氧化氮(NO)作为细胞信号分子在健康和疾病中起着核心作用。在心脏中,NO 降低自发性跳动的速率以及缩短和延伸的速度和程度,并加速再延伸的速度。由于阳离子氨基酸 l-精氨酸(l-Arg)是一氧化氮合酶(NOS)产生 NO 的底物,我们测试了介导心肌细胞中 l-Arg 摄取的转运体是否代表 NO 合成调节的干预点。在整个细胞电压钳制的大鼠心肌细胞中,用低表观亲和力的 l-Arg 激活的电流量被发现可被 NO 供体迅速且可逆地抑制。在心脏肌浆小泡上进行的放射性示踪剂摄取研究揭示了阳离子氨基酸转运的高亲和力/低容量和低亲和力/高容量组成部分的存在,这些组成部分被 NO 供体 S-亚硝基-N-乙酰-dl-青霉胺抑制。NO 以非竞争性方式抑制摄取,高亲和力和低亲和力组分的 K(i)值分别为 275 和 827 nM。荧光光谱实验表明,毫摩尔浓度的 l-Arg 最初促进随后抑制心肌细胞中内源性 NO 的释放。同样,在 460 nM 游离细胞内 Ca(2+)存在下电压钳制的心肌细胞中测量的 l-Arg 电流,在这种情况下,Ca-CaM 复合物应激活内源性 NO 产生,显示快速激活随后抑制 l-Arg 转运。NOS 抑制剂 N-硝基-l-精氨酸甲酯,但不是下游反应的阻断剂,特异性去除了这种抑制性成分。这些结果表明,NO 通过阳离子氨基酸转运体调节 l-Arg 的可用性,从而急性调节自身的生物合成。