Suppr超能文献

分辨固体中自旋和轨道磁矩的超快动力学。

Distinguishing the ultrafast dynamics of spin and orbital moments in solids.

机构信息

Institut de Physique et de Chimie des Matériaux de Strasbourg, UMR7504, CNRS et Université de Strasbourg, 23, rue du Loess, 67034 Strasbourg, France.

出版信息

Nature. 2010 May 27;465(7297):458-61. doi: 10.1038/nature09070.

Abstract

For an isolated quantum particle, such as an electron, the orbital (L) and spin (S) magnetic moments can change provided that the total angular momentum of the particle is conserved. In condensed matter, an efficient transfer between L and S can occur owing to the spin-orbit interaction, which originates in the relativistic motion of electrons. Disentangling the absolute contributions of the orbital and spin angular momenta is challenging, however, as any transfer between the two occurs on femtosecond timescales. Here we investigate such phenomena by using ultrashort optical laser pulses to change the magnetization of a ferromagnetic film and then probe its dynamics with circularly polarized femtosecond X-ray pulses. Our measurements enable us to disentangle the spin and orbital components of the magnetic moment, revealing different dynamics for L and S. We highlight the important role played by the spin-orbit interaction in the ultrafast laser-induced demagnetization of ferromagnetic films, and show also that the magneto-crystalline anisotropy energy is an important quantity to consider in such processes. Our study provides insights into the dynamics in magnetic systems as well as perspectives for the ultrafast control of information in magnetic recording media.

摘要

对于孤立的量子粒子,例如电子,如果粒子的总角动量守恒,则可以改变轨道(L)和自旋(S)磁矩。在凝聚态物质中,由于自旋轨道相互作用,可以有效地在 L 和 S 之间进行转移,自旋轨道相互作用起源于电子的相对论运动。然而,由于两者之间的任何转移都发生在飞秒时间尺度上,因此难以解耦轨道和自旋角动量的绝对值贡献。在这里,我们通过使用超短光学激光脉冲来改变铁磁薄膜的磁化强度,然后使用圆偏振飞秒 X 射线脉冲来探测其动力学,从而研究了这些现象。我们的测量使我们能够解耦磁矩的自旋和轨道分量,揭示 L 和 S 的不同动力学。我们强调了自旋轨道相互作用在铁磁薄膜超快激光退磁中的重要作用,并表明磁晶各向异性能量在这些过程中是一个重要的考虑因素。我们的研究为磁系统的动力学提供了深入的了解,并为磁记录介质中信息的超快控制提供了新的视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验