Chen Zhanghui, Luo Jun-Wei, Wang Lin-Wang
Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China.
Materials Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Mail Stop 50F, Berkeley, CA 94720, USA.
Sci Adv. 2023 Dec 15;9(50):eadi1618. doi: 10.1126/sciadv.adi1618.
Ultrafast interaction between the femtosecond laser pulse and the magnetic metal provides an efficient way to manipulate the magnetic states of matter. Numerous experimental advancements have been made on multilayer metallic films in the last two decades. However, the underlying physics remains unclear. Here, relying on an efficient ab initio spin dynamics simulation algorithm, we revealed the physics that can unify the progress in different experiments. We found that light-induced ultrafast spin transport in multilayer metallic films originates from the - spin-exchange interaction, which can induce an ultrafast, large, and pure spin current from ferromagnetic metal to nonmagnetic metal without charge carrier transport. The resulting trends of spin demagnetization and spin flow are consistent with most experiments. It can explain a variety of ultrafast light-spin manipulation experiments with different systems and different pump-probe technologies, covering a wide range of work in this field.
飞秒激光脉冲与磁性金属之间的超快相互作用为操纵物质的磁态提供了一种有效方法。在过去二十年中,多层金属薄膜已经取得了许多实验进展。然而,其 underlying 物理原理仍不清楚。在此,我们依靠一种高效的从头算自旋动力学模拟算法,揭示了能够统一不同实验进展的物理原理。我们发现,多层金属薄膜中光诱导的超快自旋输运源自自旋交换相互作用,这种相互作用能够在没有电荷载流子输运的情况下,从铁磁金属向非磁性金属诱导出超快、大且纯的自旋电流。由此产生的自旋退磁和自旋流趋势与大多数实验一致。它能够解释各种使用不同系统和不同泵浦 - 探测技术的超快光 - 自旋操纵实验,涵盖了该领域的广泛工作。