Suppr超能文献

缺铁藻细胞质膜铁还原酶活性受铁螯合剂抑制。

Plasma membrane ferric reductase activity of iron-limited algal cells is inhibited by ferric chelators.

机构信息

Department of Biology, University of Regina, Regina, SK, S4S 0A2, Canada.

出版信息

Biometals. 2010 Dec;23(6):1029-42. doi: 10.1007/s10534-010-9348-7. Epub 2010 May 29.

Abstract

Iron-limited cells of the green alga Chlorella kesslerii use a reductive mechanism to acquire Fe(III) from the extracellular environment, in which a plasma membrane ferric reductase reduces Fe(III)-chelates to Fe(II), which is subsequently taken up by the cell. Previous work has demonstrated that synthetic chelators both support ferric reductase activity (when supplied as Fe(III)-chelates) and inhibit ferric reductase. In the present set of experiments we extend these observations to naturally-occurring chelators and their analogues (desferrioxamine B mesylate, schizokinen, two forms of dihydroxybenzoic acid) and also two formulations of the commonly-used herbicide N-(phoshonomethyl)glycine (glyphosate). The ferric forms of the larger siderophores (desferrioxamine B mesylate, schizokinen) and Fe(III)-N-(phoshonomethyl)glycine (as the isopropylamine salt) all supported rapid rates of ferric reductase activity, while the iron-free forms inhibited reductase activity. The smaller siderophores/siderophore precursors, 2,3- and 3,4-dihydroxybenzoic acids, did not support high rates of reductase in the ferric form but did inhibit reductase activity in the iron-free form. Bioassays indicated that Fe(III)-chelates that supported high rates of ferric reductase activity also supported a large stimulation in the growth of iron-limited cells, and that an excess of iron-free chelator decreased the growth rate. With respect to N-(phosphonomethyl)glycine, there were differences between the pure compound (free acid form) and the most common commercial formulation (which also contains isopropylamine) in terms of supporting and inhibiting ferric reductase activity and growth. Overall, these results suggest that photosynthetic organisms that use a reductive strategy for iron acquisition both require, and are potentially simultaneously inhibited by, ferric chelators. Furthermore, these results also may provide an explanation for the frequently contradictory results of N-(phosphonomethyl)glycine application to crops: we suggest that low concentrations of this molecule likely solubilize Fe(III), making it available for plant growth, but that higher (but sub-lethal) concentrations decrease iron acquisition by inhibiting ferric reductase activity.

摘要

绿藻 Chlorella kesslerii 的缺铁细胞利用还原机制从细胞外环境中获取 Fe(III),其中质膜铁还原酶将 Fe(III)-螯合物还原为 Fe(II),随后被细胞摄取。先前的工作表明,合成螯合剂既能支持铁还原酶活性(当作为 Fe(III)-螯合物供应时),又能抑制铁还原酶。在本实验中,我们将这些观察结果扩展到天然存在的螯合剂及其类似物(去铁铵甲磺酸盐、schizokinen、两种形式的二羟基苯甲酸)以及两种常用除草剂 N-(膦羧甲基)甘氨酸(草甘膦)的制剂。较大的铁载体(去铁铵甲磺酸盐、schizokinen)和 Fe(III)-N-(膦羧甲基)甘氨酸(异丙胺盐)的铁形式都支持铁还原酶活性的快速速率,而无铁形式则抑制还原酶活性。较小的铁载体/铁载体前体,2,3-和 3,4-二羟基苯甲酸,在铁形式下不支持高还原酶速率,但在无铁形式下抑制还原酶活性。生物测定表明,支持高铁还原酶活性的 Fe(III)-螯合物也支持缺铁细胞的大量生长刺激,而过量的无铁螯合剂会降低生长速度。关于 N-(膦羧甲基)甘氨酸,纯化合物(游离酸形式)和最常见的商业制剂(还含有异丙胺)在支持和抑制铁还原酶活性和生长方面存在差异。总的来说,这些结果表明,利用还原策略获取铁的光合生物既需要,也可能同时被铁螯合剂抑制。此外,这些结果还可能为 N-(膦羧甲基)甘氨酸在作物上应用的经常矛盾的结果提供解释:我们认为,这种分子的低浓度可能会使 Fe(III)溶解,使其可用于植物生长,但较高(但亚致死)浓度通过抑制铁还原酶活性而降低铁的获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验