Laboratoire d'Informatique Médicale et de Bioinformatique (LIM&BIO), UFR SMBH, University of Paris 13, 74 rue Marcel Cachin, 93017 Bobigny cedex, France.
BMC Med Inform Decis Mak. 2010 May 28;10:31. doi: 10.1186/1472-6947-10-31.
Clinical practice guidelines give recommendations about what to do in various medical situations, including therapeutical recommendations for drug prescription. An effective way to computerize these recommendations is to design critiquing decision support systems, i.e. systems that criticize the physician's prescription when it does not conform to the guidelines. These systems are commonly based on a list of "if conditions then criticism" rules. However, writing these rules from the guidelines is not a trivial task. The objective of this article is to propose methods that (1) simplify the implementation of guidelines' therapeutical recommendations in critiquing systems by automatically translating structured therapeutical recommendations into a list of "if conditions then criticize" rules, and (2) can generate an appropriate textual label to explain to the physician why his/her prescription is not recommended.
We worked on the therapeutic recommendations in five clinical practice guidelines concerning chronic diseases related to the management of cardiovascular risk. We evaluated the system using a test base of more than 2000 cases.
Algorithms for automatically translating therapeutical recommendations into "if conditions then criticize" rules are presented. Eight generic recommendations are also proposed; they are guideline-independent, and can be used as default behaviour for handling various situations that are usually implicit in the guidelines, such as decreasing the dose of a poorly tolerated drug. Finally, we provide models and methods for generating a human-readable textual critique. The system was successfully evaluated on the test base.
We show that it is possible to criticize physicians' prescriptions starting from a structured clinical guideline, and to provide clear explanations. We are now planning a randomized clinical trial to evaluate the impact of the system on practices.
临床实践指南针对各种医疗情况提出了建议,包括药物处方治疗建议。将这些建议计算机化的有效方法是设计批评性决策支持系统,即当医生的处方不符合指南时对其进行批评的系统。这些系统通常基于“如果条件则批评”规则列表。然而,从指南中编写这些规则并不是一项简单的任务。本文的目的是提出方法,(1)通过将结构化治疗建议自动转换为“如果条件则批评”规则列表,简化批评系统中指南治疗建议的实施,(2)可以生成适当的文本标签,向医生解释为什么不推荐他/她的处方。
我们针对与心血管风险管理相关的慢性疾病的五个临床实践指南中的治疗建议进行了研究。我们使用超过 2000 个案例的测试库来评估系统。
提出了将治疗建议自动转换为“如果条件则批评”规则的算法。还提出了 8 条通用建议;它们与指南无关,可作为处理各种情况的默认行为,这些情况通常在指南中隐含,例如降低不耐受药物的剂量。最后,我们提供了生成可阅读的文本批评的模型和方法。该系统在测试库上成功进行了评估。
我们表明,从结构化临床指南开始对医生的处方进行批评,并提供明确的解释是可行的。我们现在计划进行一项随机临床试验,以评估该系统对实践的影响。