Department of Structural Biology, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 0200, Australia.
J Biol Chem. 2010 Aug 6;285(32):24759-68. doi: 10.1074/jbc.M109.097881. Epub 2010 Jun 1.
The cytokines, interleukin-3 (IL-3), interleukin-5 (IL-5), and granulocyte-macrophage colony-stimulating factor (GM-CSF), exhibit overlapping activities in the regulation of hematopoietic cells. In humans, the common beta (betac) receptor is shared by the three cytokines and functions together with cytokine-specific alpha subunits in signaling. A widely accepted hypothesis is that receptor activation requires heterodisulfide formation between the domain 1 D-E loop disulfide in human betac (hbetac) and unidentified cysteine residues in the N-terminal domains of the alpha receptors. Since the development of this hypothesis, new data have been obtained showing that domain 1 of hbetac is part of the cytokine binding epitope of this receptor and that an IL-3Ralpha isoform lacking the N-terminal Ig-like domain (the "SP2" isoform) is competent for signaling. We therefore investigated whether distortion of the domain 1-domain 4 ligand-binding epitope in hbetac and the related mouse receptor, beta(IL-3), could account for the loss of receptor signaling when the domain 1 D-E loop disulfide is disrupted. Indeed, mutation of the disulfide in hbetac led to both a complete loss of high affinity binding with the human IL-3Ralpha SP2 isoform and of downstream signaling. Mutation of the orthologous residues in the mouse IL-3-specific receptor, beta(IL-3), not only precluded direct binding of mouse IL-3 but also resulted in complete loss of high affinity binding and signaling with the mouse IL-3Ralpha SP2 isoform. Our data are most consistent with a role for the domain 1 D-E loop disulfide of hbetac and beta(IL-3) in maintaining the precise positions of ligand-binding residues necessary for normal high affinity binding and signaling.
细胞因子白细胞介素-3 (IL-3)、白细胞介素-5 (IL-5) 和粒细胞-巨噬细胞集落刺激因子 (GM-CSF) 在调节造血细胞方面表现出重叠的活性。在人类中,三种细胞因子共用共同的β(βc)受体,与细胞因子特异性的α亚单位一起在信号转导中发挥作用。一个被广泛接受的假设是,受体的激活需要人类βc(hβc)的域 1 D-E 环二硫键与α受体的 N 端结构域中未识别的半胱氨酸残基之间形成异二硫键。自该假说提出以来,已有新的数据表明,hβc 的域 1 是该受体细胞因子结合表位的一部分,并且缺乏 N 端免疫球蛋白样结构域的 IL-3Rα 同工型(“SP2”同工型)能够进行信号转导。因此,我们研究了 hβc 中的域 1-域 4 配体结合表位的扭曲以及相关的小鼠受体β(IL-3),当域 1 D-E 环二硫键被破坏时,是否可以解释受体信号转导的丧失。事实上,hβc 中二硫键的突变不仅导致与人类 IL-3Rα SP2 同工型的高亲和力结合完全丧失,而且还导致下游信号转导完全丧失。在小鼠特异性 IL-3 受体β(IL-3)中,同源残基的突变不仅阻止了小鼠 IL-3 的直接结合,而且还导致与小鼠 IL-3Rα SP2 同工型的高亲和力结合和信号转导完全丧失。我们的数据最符合 hβc 和β(IL-3)的域 1 D-E 环二硫键在维持正常高亲和力结合和信号转导所需的配体结合残基的精确位置方面的作用。