Stomski F C, Woodcock J M, Zacharakis B, Bagley C J, Sun Q, Lopez A F
Cytokine Receptor Laboratory, The Hanson Centre for Cancer Research, The Institute of Medical and Veterinary Science, Adelaide 5000, South Australia, Australia.
J Biol Chem. 1998 Jan 9;273(2):1192-9. doi: 10.1074/jbc.273.2.1192.
The human interleukin 3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) receptors undergo covalent dimerization of the respective specific alpha chains with the common beta subunit (betac) in the presence of the cognate ligand. We have now performed alanine substitutions of individual Cys residues in betac to identify the Cys residues involved and their contribution to activation of the IL-3, GM-CSF, and IL-5 receptors. We found that substitution of Cys-86, Cys-91, and Cys-96 in betac but not of Cys-100 or Cys-234 abrogated disulfide-linked IL-3 receptor dimerization. However, although Cys-86 and Cys-91 betac mutants retained their ability to form non-disulfide-linked dimers with IL-3Ralpha, substitution of Cys-96 eliminated this interaction. Binding studies demonstrated that all betac mutants with the exception of C96A supported high affinity binding of IL-3 and GM-CSF. In receptor activation experiments, we found that betac mutants C86A, C91A, and C96A but not C100A or C234A abolished phosphorylation of betac in response to IL-3, GM-CSF, or IL-5. These data show that although Cys-96 is important for the structural integrity of betac, Cys-86 and Cys-91 participate in disulfide-linked receptor heterodimerization and that this linkage is essential for tyrosine phosphorylation of betac. Sequence alignment of betac with other cytokine receptor signaling subunits in light of these data shows that Cys-86 and Cys-91 represent a motif restricted to human and mouse beta chains, suggesting a unique mechanism of activation utilized by the IL-3, GM-CSF, and IL-5 receptors.
人白细胞介素3(IL-3)和粒细胞-巨噬细胞集落刺激因子(GM-CSF)受体在同源配体存在的情况下,各自特异性的α链与共同的β亚基(βc)发生共价二聚化。我们现在对βc中各个半胱氨酸(Cys)残基进行丙氨酸替换,以确定所涉及的Cys残基及其对IL-3、GM-CSF和IL-5受体激活的贡献。我们发现,βc中Cys-86、Cys-91和Cys-96的替换,但不是Cys-100或Cys-234的替换,消除了二硫键连接的IL-3受体二聚化。然而,尽管Cys-86和Cys-91的βc突变体保留了与IL-3Rα形成非二硫键连接二聚体的能力,但Cys-96的替换消除了这种相互作用。结合研究表明,除C96A外,所有βc突变体都支持IL-3和GM-CSF的高亲和力结合。在受体激活实验中,我们发现βc突变体C86A、C91A和C96A,但不是C100A或C234A,消除了βc对IL-3、GM-CSF或IL-5的磷酸化反应。这些数据表明,尽管Cys-96对βc的结构完整性很重要,但Cys-86和Cys-91参与二硫键连接的受体异二聚化,并且这种连接对于βc的酪氨酸磷酸化至关重要。根据这些数据对βc与其他细胞因子受体信号亚基进行序列比对表明,Cys-86和Cys-91代表了一种仅限于人和小鼠β链的基序,这表明IL-3、GM-CSF和IL-5受体利用了一种独特的激活机制。