Materials Structure and Modeling Research Group of the Hungarian Academy of Sciences, Budapest University of Technology and Economics, P.O. Box 91, 1521, Budapest, Hungary.
Dalton Trans. 2010 Jul 21;39(27):6221-30. doi: 10.1039/c001182g. Epub 2010 Jun 1.
The molecular and electronic structure of dysprosium triiodide, DyI(3), and its dimer, Dy(2)I(6), was determined by high level computations, gas-phase electron diffraction, and gas-phase infrared and matrix-isolation infrared and Raman spectroscopy. The free monomeric molecule is planar from all methods with an equilibrium bond length of 2.808(9) A; the thermal average bond length from electron diffraction is 2.828(6) A. The molecule forms complexes in the matrix-isolation experiments causing pyramidalisation of planar monomeric molecules. The likelihood of having both pyramidal and planar DyI(3) molecules in the matrix is discussed in order to explain certain features of the spectra. Our computations suggest that the dimer geometry depends on the occupation of the partially filled 4f orbitals. As this is the third molecule in the dysprosium trihalide series studied, trends in their electronic and molecular structures are presented and discussed.
通过高精度计算、气相电子衍射以及气相红外和基质隔离红外和拉曼光谱,确定了三碘化镝(DyI(3))及其二聚体 Dy(2)I(6)的分子和电子结构。从所有方法来看,游离单体分子都是平面的,平衡键长为 2.808(9)Å;电子衍射的热平均键长为 2.828(6)Å。在基质隔离实验中,该分子形成复合物,导致平面单体分子的三角化。为了解释某些光谱特征,讨论了在基质中同时存在三角化和平面 DyI(3)分子的可能性。我们的计算表明,二聚体几何形状取决于部分填充的 4f 轨道的占据情况。由于这是镝三卤化物系列中研究的第三个分子,因此介绍和讨论了它们的电子和分子结构中的趋势。