AVT Biochemical Engineering, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
Biotechnol Bioeng. 2010 Oct 15;107(3):497-505. doi: 10.1002/bit.22825.
In industrial-scale biotechnological processes, the active control of the pH-value combined with the controlled feeding of substrate solutions (fed-batch) is the standard strategy to cultivate both prokaryotic and eukaryotic cells. On the contrary, for small-scale cultivations, much simpler batch experiments with no process control are performed. This lack of process control often hinders researchers to scale-up and scale-down fermentation experiments, because the microbial metabolism and thereby the growth and production kinetics drastically changes depending on the cultivation strategy applied. While small-scale batches are typically performed highly parallel and in high throughput, large-scale cultivations demand sophisticated equipment for process control which is in most cases costly and difficult to handle. Currently, there is no technical system on the market that realizes simple process control in high throughput. The novel concept of a microfermentation system described in this work combines a fiber-optic online-monitoring device for microtiter plates (MTPs)--the BioLector technology--together with microfluidic control of cultivation processes in volumes below 1 mL. In the microfluidic chip, a micropump is integrated to realize distinct substrate flow rates during fed-batch cultivation in microscale. Hence, a cultivation system with several distinct advantages could be established: (1) high information output on a microscale; (2) many experiments can be performed in parallel and be automated using MTPs; (3) this system is user-friendly and can easily be transferred to a disposable single-use system. This article elucidates this new concept and illustrates applications in fermentations of Escherichia coli under pH-controlled and fed-batch conditions in shaken MTPs.
在工业规模的生物技术过程中,结合底物溶液(分批补料)的 pH 值的主动控制是培养原核和真核细胞的标准策略。相反,对于小规模培养,通常进行没有过程控制的更简单的分批实验。这种缺乏过程控制常常阻碍研究人员进行发酵实验的放大和缩小,因为微生物代谢以及由此产生的生长和生产动力学会根据应用的培养策略而急剧变化。虽然小规模批次通常高度平行且高通量进行,但大规模培养需要用于过程控制的复杂设备,而在大多数情况下,这些设备昂贵且难以处理。目前,市场上没有实现高通量简单过程控制的技术系统。本工作中描述的微发酵系统的新概念将用于微滴定板(MTP)的光纤在线监测设备(BioLector 技术)与体积低于 1 毫升的培养过程的微流控结合在一起。在微流控芯片中,集成了一个微泵以在微尺度下的分批补料培养中实现不同的底物流速。因此,可以建立具有几个显著优势的培养系统:(1)在微尺度上具有高信息量输出;(2)可以使用 MTP 并行进行许多实验并实现自动化;(3)该系统用户友好,并且可以轻松转移到一次性使用的系统中。本文阐述了这个新概念,并说明了在 pH 控制和分批补料条件下在摇瓶 MTP 中发酵大肠杆菌的应用。