Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany.
Kuhner Shaker GmbH, Kaiserstraße 100, 52134, Herzogenrath, Germany.
BMC Biotechnol. 2023 Mar 2;23(1):5. doi: 10.1186/s12896-023-00775-9.
In industrial microbial biotechnology, fed-batch processes are frequently used to avoid undesirable biological phenomena, such as substrate inhibition or overflow metabolism. For targeted process development, fed-batch options for small scale and high throughput are needed. One commercially available fed-batch fermentation system is the FeedPlate, a microtiter plate (MTP) with a polymer-based controlled release system. Despite standardisation and easy incorporation into existing MTP handling systems, FeedPlates cannot be used with online monitoring systems that measure optically through the transparent bottom of the plate. One such system that is broadly used in biotechnological laboratories, is the commercial BioLector. To allow for BioLector measurements, while applying the polymer-based feeding technology, positioning of polymer rings instead of polymer disks at the bottom of the well has been proposed. This strategy has a drawback: measurement requires an adjustment of the software settings of the BioLector device. This adjustment modifies the measuring position relative to the wells, so that the light path is no longer blocked by the polymer ring, but, traverses through the inner hole of the ring. This study aimed at overcoming that obstacle and allowing for measurement of fed-batch cultivations using a commercial BioLector without adjustment of the relative measurement position within each well.
Different polymer ring heights, colours and positions in the wells were investigated for their influence on maximum oxygen transfer capacity, mixing time and scattered light measurement. Several configurations of black polymer rings were identified that allow measurement in an unmodified, commercial BioLector, comparable to wells without rings. Fed-batch experiments with black polymer rings with two model organisms, E. coli and H. polymorpha, were conducted. The identified ring configurations allowed for successful cultivations, measuring the oxygen transfer rate and dissolved oxygen tension, pH, scattered light and fluorescence. Using the obtained online data, glucose release rates of 0.36 to 0.44 mg/h could be determined. They are comparable to formerly published data of the polymer matrix.
The final ring configurations allow for measurements of microbial fed-batch cultivations using a commercial BioLector without requiring adjustments of the instrumental measurement setup. Different ring configurations achieve similar glucose release rates. Measurements from above and below the plate are possible and comparable to measurements of wells without polymer rings. This technology enables the generation of a comprehensive process understanding and target-oriented process development for industrial fed-batch processes.
在工业微生物生物技术中,补料分批培养过程常用于避免底物抑制或过度代谢等不良生物现象。为了进行有针对性的过程开发,需要小规模和高通量的补料分批选择。一种商业上可用的补料分批发酵系统是 FeedPlate,这是一种带有基于聚合物的控制释放系统的微量滴定板(MTP)。尽管标准化且易于纳入现有的 MTP 处理系统,但 FeedPlates 不能与通过板的透明底部进行光学测量的在线监测系统一起使用。在生物技术实验室中广泛使用的这样一个系统是商业 BioLector。为了允许进行 BioLector 测量,同时应用基于聚合物的进料技术,提出了在孔的底部放置聚合物环而不是聚合物盘的策略。这种策略有一个缺点:测量需要调整 BioLector 设备的软件设置。这种调整改变了相对于孔的测量位置,使得光路不再被聚合物环阻挡,而是穿过环的内孔。本研究旨在克服这一障碍,允许使用商业 BioLector 进行补料分批培养的测量,而无需调整每个孔内的相对测量位置。
研究了不同聚合物环的高度、颜色和在孔中的位置对最大氧转移能力、混合时间和散射光测量的影响。确定了几种黑色聚合物环的配置,这些配置允许在未经修改的商业 BioLector 中进行测量,与没有环的孔相当。使用两种模型生物大肠杆菌和 H. polymorpha 进行了带有黑色聚合物环的补料分批实验。确定的环配置允许成功培养,测量氧转移率和溶解氧张力、pH 值、散射光和荧光。使用获得的在线数据,可以确定 0.36 至 0.44 mg/h 的葡萄糖释放速率。它们与以前发表的聚合物基质数据相当。
最终的环配置允许在不要求调整仪器测量设置的情况下使用商业 BioLector 进行微生物补料分批培养的测量。不同的环配置可实现相似的葡萄糖释放速率。可以从板上方和下方进行测量,并且与没有聚合物环的孔的测量相当。这项技术使全面了解工业补料分批过程和有针对性的过程开发成为可能。