Department of Chemistry, University of California, Berkeley, California 94720, USA.
J Am Chem Soc. 2010 Jun 30;132(25):8697-703. doi: 10.1021/ja101502t.
Three series of bimetallic nanoparticle catalysts (Rh(x)Pd(1-x), Rh(x)Pt(1-x), and Pd(x)Pt(1-x), x = 0.2, 0.5, 0.8) were synthesized using one-step colloidal chemistry. X-ray photoelectron spectroscopy (XPS) depth profiles using different X-ray energies and scanning transmission electron microscopy showed that the as-synthesized Rh(x)Pd(1-x) and Pd(x)Pt(1-x) nanoparticles have a core-shell structure whereas the Rh(x)Pt(1-x) alloys are more homogeneous in structure. The evolution of their structures and chemistry under oxidizing and reducing conditions was studied with ambient-pressure XPS (AP-XPS) in the Torr pressure range. The Rh(x)Pd(1-x) and Rh(x)Pt(1-x) nanoparticles undergo reversible changes of surface composition and chemical state when the reactant gases change from oxidizing (NO or O(2) at 300 degrees C) to reducing (H(2) or CO at 300 degrees C) or catalytic (mixture of NO and CO at 300 degrees C). In contrast, no significant change in the distribution of the Pd and Pt atoms in the Pd(x)Pt(1-x) nanoparticles was observed. The difference in restructuring behavior under these reaction conditions in the three series of bimetallic nanoparticle catalysts is correlated with the surface free energy of the metals and the heat of formation of the metallic oxides. The observation of structural evolution of bimetallic nanoparticles under different reaction conditions suggests the importance of in situ studies of surface structures of nanoparticle catalysts.
三种双金属纳米粒子催化剂(Rh(x)Pd(1-x)、Rh(x)Pt(1-x)和 Pd(x)Pt(1-x),x = 0.2、0.5、0.8)通过一步胶体化学法合成。使用不同的 X 射线能量和扫描透射电子显微镜进行的 X 射线光电子能谱(XPS)深度剖析表明,所合成的 Rh(x)Pd(1-x)和 Pd(x)Pt(1-x)纳米颗粒具有核壳结构,而 Rh(x)Pt(1-x)合金在结构上更为均匀。在大气压 XPS(AP-XPS)在托压力范围内研究了它们在氧化和还原条件下的结构和化学演变。当反应物气体从氧化(300°C 时的 NO 或 O(2))变为还原(300°C 时的 H(2)或 CO)或催化(300°C 时的 NO 和 CO 混合物)时,Rh(x)Pd(1-x)和 Rh(x)Pt(1-x)纳米颗粒经历表面组成和化学状态的可逆变化。相比之下,在 Pd(x)Pt(1-x)纳米颗粒中,Pd 和 Pt 原子的分布没有明显变化。在这三种双金属纳米粒子催化剂系列中,在这些反应条件下的重构行为的差异与金属的表面自由能和金属氧化物的形成热有关。在不同反应条件下观察到双金属纳米粒子的结构演变表明,原位研究纳米粒子催化剂的表面结构非常重要。