Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
Mol Plant Microbe Interact. 2010 Jul;23(7):915-26. doi: 10.1094/MPMI-23-7-0915.
Many plants improve their phosphate (Pi) availability by forming mutualistic associations with arbuscular mycorrhizal (AM) fungi. Pi-repleted plants are much less colonized by AM fungi than Pi-depleted plants. This indicates a link between plant Pi signaling and AM development. MicroRNAs (miR) of the 399 family are systemic Pi-starvation signals important for maintenance of Pi homeostasis in Arabidopsis thaliana and might also qualify as signals regulating AM development in response to Pi availability. MiR399 could either represent the systemic low-Pi signal promoting or required for AM formation or they could act as counter players of systemic Pi-availability signals that suppress AM symbiosis. To test either of these assumptions, we analyzed the miR399 family in the AM-capable plant model Medicago truncatula and could experimentally confirm 10 novel MIR399 genes in this species. Pi-depleted plants showed increased expression of mature miR399 and multiple pri-miR399, and unexpectedly, levels of five of the 15 pri-miR399 species were higher in leaves of mycorrhizal plants than in leaves of nonmycorrhizal plants. Compared with nonmycorrhizal Pi-depleted roots, mycorrhizal roots of Pi-depleted M. truncatula and tobacco plants had increased Pi contents due to symbiotic Pi uptake but displayed higher mature miR399 levels. Expression levels of MtPho2 remained low and PHO2-dependent Pi-stress marker transcript levels remained high in these mycorrhizal roots. Hence, an AM symbiosis-related signal appears to increase miR399 expression and decrease PHO2 activity. MiR399 overexpression in tobacco suggested that miR399 alone is not sufficient to improve mycorrhizal colonization supporting the assumption that, in mycorrhizal roots, increased miR399 are necessary to keep the MtPho2 expression and activity low, which would otherwise increase in response to symbiotic Pi uptake.
许多植物通过与丛枝菌根(AM)真菌形成共生关系来提高其磷酸盐(Pi)的可用性。与 Pi 匮乏的植物相比,Pi 充足的植物被 AM 真菌定植的程度要低得多。这表明植物 Pi 信号与 AM 发育之间存在联系。399 家族的 microRNAs(miR)是系统性 Pi 饥饿信号,对于维持拟南芥 Pi 内稳态很重要,并且可能也作为调节 AM 发育以响应 Pi 可用性的信号。miR399 可以作为促进 AM 形成的系统性低 Pi 信号,也可以作为抑制 AM 共生的系统性 Pi 可用性信号的拮抗物。为了检验这两种假设中的任何一种,我们分析了具有 AM 能力的植物模型 Medicago truncatula 中的 miR399 家族,并在该物种中实验性地证实了 10 个新的 MIR399 基因。Pi 匮乏的植物表现出成熟 miR399 和多个 pri-miR399 的表达增加,出人意料的是,在 AM 植物的叶片中,15 种 pri-miR399 中有 5 种的水平高于非 AM 植物的叶片。与非 AM Pi 匮乏的根相比,由于共生 Pi 吸收,Pi 匮乏的 M. truncatula 和烟草植物的 AM 根中的 Pi 含量增加,但显示出更高的成熟 miR399 水平。在这些 AM 根中,MtPho2 的表达水平仍然较低,并且 PHO2 依赖的 Pi 胁迫标记物转录本的水平仍然较高。因此,一种与 AM 共生相关的信号似乎会增加 miR399 的表达并降低 PHO2 的活性。烟草中的 miR399 过表达表明,miR399 本身不足以改善菌根定殖,这支持了这样的假设,即在 AM 根中,增加的 miR399 是保持 MtPho2 表达和活性低所必需的,否则,MtPho2 会因共生 Pi 吸收而增加。