Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan.
School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia.
Ann Bot. 2022 Feb 11;129(3):287-302. doi: 10.1093/aob/mcab138.
Phosphorus (P) availability is often limiting for rice (Oryza sativa) production. Improving internal P-use efficiency (PUE) is crucial to sustainable food production, particularly in low-input systems. A critical aspect of PUE in plants, and one that remains poorly understood, is the investment of leaf P in different chemical P fractions (nucleic acid-P, lipid-P, inorganic-P, metabolite-P and residual-P). The overarching objective of this study was to understand how these key P fractions influence PUE.
Three high-PUE and two low-PUE rice genotypes were grown in hydroponics with contrasting P supplies. We measured PUE, total P, P fractions, photosynthesis and biomass.
Low investment in lipid-P was strongly associated with increased photosynthetic PUE (PPUE), achieved by reducing total leaf P concentration while maintaining rapid photosynthetic rates. All low-P plants exhibited a low investment in inorganic-P and lipid-P, but not nucleic acid-P. In addition, whole-plant PUE was strongly associated with reduced total P concentration, increased biomass and increased preferential allocation of resources to the youngest mature leaves.
Lipid remodelling has been shown in rice before, but we show for the first time that reduced lipid-P investment improves PUE in rice without reducing photosynthesis. This presents a novel pathway for increasing PUE by targeting varieties with reduced lipid-P investment. This will benefit rice production in low-P soils and in areas where fertilizer use is limited, improving global food security by reducing P fertilizer demands and food production costs.
磷(P)的有效性通常是限制水稻(Oryza sativa)生产的关键因素。提高内部 P 利用效率(PUE)对于可持续粮食生产至关重要,特别是在低投入系统中。植物 PUE 的一个关键方面,也是一个理解不足的方面,是叶片 P 在不同化学 P 组分(核酸-P、脂类-P、无机-P、代谢物-P 和残余-P)中的分配。本研究的总体目标是了解这些关键 P 组分如何影响 PUE。
在水培条件下,用不同 P 供应的方法种植了三个高 PUE 和两个低 PUE 的水稻基因型。我们测量了 PUE、总 P、P 组分、光合作用和生物量。
低 P 投入与增加光合 PUE(PPUE)密切相关,通过降低总叶片 P 浓度同时保持快速的光合速率来实现。所有低 P 植株都表现出低无机-P 和脂类-P 投入,但核酸-P 投入没有降低。此外,整株 PUE 与总 P 浓度降低、生物量增加和资源向最年轻的成熟叶片优先分配密切相关。
以前在水稻中已经观察到脂类重塑,但我们首次表明,减少脂类-P 投入可以在不降低光合作用的情况下提高水稻的 PUE。这为通过靶向具有低脂类-P 投入的品种来提高 PUE 提供了一种新途径。这将有利于低 P 土壤和肥料使用受限地区的水稻生产,通过减少 P 肥料需求和降低粮食生产成本,提高全球粮食安全。