Suppr超能文献

使用L曲线和GCV方法选择正则化参数的皮质电位成像

Cortical potential imaging using L-curve and GCV method to choose the regularisation parameter.

作者信息

Subramaniyam Narayan P, Väisänen Outi Rm, Wendel Katrina E, Malmivuo Jaakko Av

机构信息

Department of Biomedical Engineering, Tampere University of Technology, Tampere, Finland.

出版信息

Nonlinear Biomed Phys. 2010 Jun 3;4 Suppl 1(Suppl 1):S4. doi: 10.1186/1753-4631-4-S1-S4.

Abstract

BACKGROUND

The electroencephalography (EEG) is an attractive and a simple technique to measure the brain activity. It is attractive due its excellent temporal resolution and simple due to its non-invasiveness and sensor design. However, the spatial resolution of EEG is reduced due to the low conducting skull. In this paper, we compute the potential distribution over the closed surface covering the brain (cortex) from the EEG scalp potential. We compare two methods - L-curve and generalised cross validation (GCV) used to obtain the regularisation parameter and also investigate the feasibility in applying such techniques to N170 component of the visually evoked potential (VEP) data.

METHODS

Using the image data set of the visible human man (VHM), a finite difference method (FDM) model of the head was constructed. The EEG dataset (256-channel) used was the N170 component of the VEP. A forward transfer matrix relating the cortical potential to the scalp potential was obtained. Using Tikhonov regularisation, the potential distribution over the cortex was obtained.

RESULTS

The cortical potential distribution for three subjects was solved using both L-curve and GCV method. A total of 18 cortical potential distributions were obtained (3 subjects with three stimuli each - fearful face, neutral face, control objects).

CONCLUSIONS

The GCV method is a more robust method compared to L-curve to find the optimal regularisation parameter. Cortical potential imaging is a reliable method to obtain the potential distribution over cortex for VEP data.

摘要

背景

脑电图(EEG)是一种用于测量大脑活动的颇具吸引力且简单的技术。它因出色的时间分辨率而具有吸引力,又因非侵入性和传感器设计而操作简单。然而,由于颅骨导电性低,EEG的空间分辨率会降低。在本文中,我们从EEG头皮电位计算覆盖大脑(皮质)的封闭表面上的电位分布。我们比较了用于获得正则化参数的两种方法——L曲线法和广义交叉验证(GCV)法,并研究了将此类技术应用于视觉诱发电位(VEP)数据的N170成分的可行性。

方法

使用可见人体数据集(VHM)构建头部的有限差分法(FDM)模型。所使用的EEG数据集(256通道)是VEP的N170成分。获得了将皮质电位与头皮电位相关联的正向传递矩阵。使用蒂霍诺夫正则化获得皮质上的电位分布。

结果

使用L曲线法和GCV法求解了三名受试者的皮质电位分布。总共获得了18种皮质电位分布(3名受试者,每种有三种刺激——恐惧面孔、中性面孔、对照物体)。

结论

与L曲线法相比,GCV法是一种更稳健的寻找最优正则化参数的方法。皮质电位成像对于获取VEP数据在皮质上的电位分布是一种可靠的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ecf/2880801/5c9ffc516829/1753-4631-4-S1-S4-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验