Dipartimento di Chimica, Università di Ferrara, 44100 Ferrara, Italy.
J Phys Chem B. 2010 Nov 18;114(45):14495-504. doi: 10.1021/jp101849m. Epub 2010 Jun 7.
Two new supramolecular boxes, (ZnMC)(2)(rPBI)(2) and (ZnMC)(2)(gPBI)(2), have been obtained by axial coordination of N,N'-dipyridyl-functionalized perylene bisimide (PBI) dyes to the zinc ion centers of two 2+2 porphyrin metallacycles (ZnMC = trans,cis,cis-RuCl(2)(CO)(2)(Zn·4'-cis-DPyP)). The two molecular boxes involve PBI pillars with different substituents at the bay area: the "red" PBI (rPBI = N,N'-di(4-pyridyl)-1,6,7,12-tetra(4-tert-butylphenoxy)perylene-3,4:9,10-tetracarboxylic acid bisimide) containing tert-butylphenoxy substituents and the "green" PBI (gPBI = N,N'-di(4-pyridyl)-1,7-bis(pyrrolidin-1-yl)perylene-3,4:9,10-tetracarboxylic acid bisimide) bearing pyrrolidinyl substituents. Due to the rigidity of the modules and the simultaneous formation of four pyridine-zinc bonds, these discrete adducts self-assemble quantitatively and are remarkably stable in dichloromethane solution. The photophysical behavior of the new supramolecular boxes has been studied in dichloromethane by emission spectroscopy and ultrafast absorption techniques. A different photophysical behavior is observed for the two systems. In (ZnMC)(2)(rPBI)(2), efficient electron transfer quenching of both perylene bisimide and zinc porphyrin chromophores is observed, leading to a charge separated state, PBI(-)-Zn(+), in which a perylene bisimide unit is reduced and zinc porphyrin is oxidized. In the deactivation of the perylene bisimide localized excited state, an intermediate zwitterionic charge transfer state of type PBI(-)-PBI(+) seems to play a relevant role. In (ZnMC)(2)(gPBI)(2), singlet energy transfer from the Zn porphyrin chromophores to the perylene bisimide units occurs with an efficiency of 0.7. This lower than unity value is due to a competing electron transfer quenching, leading to the charge separated state PBI(-)-Zn(+). The distinct photophysical behavior of these two supramolecular boxes is interpreted in terms of energy changes occurring upon replacement of the "red" rPBI by "green" gPBI.
两个新的超分子盒,(ZnMC)(2)(rPBI)(2)和(ZnMC)(2)(gPBI)(2),通过轴向配位 N,N'-二吡啶基功能化的苝二酰亚胺(PBI)染料到锌离子中心的两个 2+2 卟啉金属环(ZnMC=trans,cis,cis-RuCl(2)(CO)(2)(Zn·4'-cis-DPyP))。这两个分子盒涉及到具有不同取代基的 PBI 支柱在海湾地区:"红色" PBI(rPBI=N,N'-二(4-吡啶基)-1,6,7,12-四(4-叔丁基苯氧基)苝-3,4:9,10-四羧酸双亚胺)含有叔丁基苯氧基取代基和"绿色"PBI(gPBI=N,N'-二(4-吡啶基)-1,7-双(吡咯烷-1-基)苝-3,4:9,10-四羧酸双亚胺)具有吡咯烷基取代基。由于模块的刚性和同时形成四个吡啶-锌键,这些离散的加合物定量自组装,并在二氯甲烷溶液中非常稳定。新的超分子盒的光物理行为已经通过发射光谱和超快吸收技术在二氯甲烷中进行了研究。对于这两个系统,观察到不同的光物理行为。在(ZnMC)(2)(rPBI)(2)中,观察到苝二酰亚胺和锌卟啉发色团的有效电子转移猝灭,导致电荷分离态 PBI(-)-Zn(+),其中苝二酰亚胺单元被还原,锌卟啉被氧化。在苝二酰亚胺局域激发态的失活过程中,似乎涉及一种中间体两性离子电荷转移态 PBI(-)-PBI(+)。在(ZnMC)(2)(gPBI)(2)中,锌卟啉发色团到苝二酰亚胺单元的单重态能量转移效率为 0.7。这个低于 1 的值是由于竞争的电子转移猝灭,导致电荷分离态 PBI(-)-Zn(+)。这两个超分子盒的明显光物理行为可以根据用"绿色"gPBI 取代"红色"rPBI 时发生的能量变化来解释。