Behr Michel, Pérès Jeremie, Llari Maxime, Godio Yves, Jammes Yves, Brunet Christian
LBA, Faculté de Medecine Nord, UMRT24, INRETS/Université de la Méditerranée, Boulevard Pierre Dramard, Marseille F-13916, France.
J Biomech Eng. 2010 Jan;132(1):014501. doi: 10.1115/1.4000308.
Over the past decade, road safety research and impact biomechanics have strongly stimulated the development of anatomical human numerical models using the finite element (FE) approach. The good accuracy of these models, in terms of geometric definition and mechanical response, should now find new areas of application. We focus here on the use of such a model to investigate its potential when studying respiratory mechanics. The human body FE model used in this study was derived from the RADIOSS HUMOS model. Modifications first concerned the integration and interfacing of a user-controlled respiratory muscular system including intercostal muscles, scalene muscles, the sternocleidomastoid muscle, and the diaphragm and abdominal wall muscles. Volumetric and pressure measurement procedures for the lungs and both the thoracic and abdominal chambers were also implemented. Validation of the respiratory module was assessed by comparing a simulated maximum inspiration maneuver to volunteer studies in the literature. Validation parameters included lung volume changes, rib rotations, diaphragm shape and vertical deflexion, and intra-abdominal pressure variation. The HUMOS model, initially dedicated to road safety research, could be turned into a promising, realistic 3D model of respiration with only minor modifications.
在过去十年中,道路安全研究和冲击生物力学极大地推动了使用有限元(FE)方法的人体解剖数值模型的发展。这些模型在几何定义和力学响应方面具有良好的准确性,现在应该能找到新的应用领域。我们在此重点关注使用这样一个模型来研究其在呼吸力学研究中的潜力。本研究中使用的人体有限元模型源自RADIOSS HUMOS模型。首先进行的修改涉及用户控制的呼吸肌肉系统的整合与接口,该系统包括肋间肌、斜角肌、胸锁乳突肌、膈肌和腹壁肌肉。还实施了肺以及胸腔和腹腔的容积和压力测量程序。通过将模拟的最大吸气动作与文献中的志愿者研究进行比较,评估了呼吸模块的有效性。验证参数包括肺容积变化、肋骨旋转、膈肌形状和垂直偏移以及腹内压变化。最初致力于道路安全研究的HUMOS模型,只需进行少量修改,就可以变成一个有前景的、逼真的三维呼吸模型。