Suppr超能文献

最大配对问题的多项式算法:在任意树上的高效系统发育靶向

Polynomial algorithms for the Maximal Pairing Problem: efficient phylogenetic targeting on arbitrary trees.

作者信息

Arnold Christian, Stadler Peter F

机构信息

Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany.

出版信息

Algorithms Mol Biol. 2010 Jun 2;5:25. doi: 10.1186/1748-7188-5-25.

Abstract

BACKGROUND

The Maximal Pairing Problem (MPP) is the prototype of a class of combinatorial optimization problems that are of considerable interest in bioinformatics: Given an arbitrary phylogenetic tree T and weights omegaxy for the paths between any two pairs of leaves (x, y), what is the collection of edge-disjoint paths between pairs of leaves that maximizes the total weight? Special cases of the MPP for binary trees and equal weights have been described previously; algorithms to solve the general MPP are still missing, however.

RESULTS

We describe a relatively simple dynamic programming algorithm for the special case of binary trees. We then show that the general case of multifurcating trees can be treated by interleaving solutions to certain auxiliary Maximum Weighted Matching problems with an extension of this dynamic programming approach, resulting in an overall polynomial-time solution of complexity (n4 log n) w.r.t. the number n of leaves. The source code of a C implementation can be obtained under the GNU Public License from http://www.bioinf.uni-leipzig.de/Software/Targeting. For binary trees, we furthermore discuss several constrained variants of the MPP as well as a partition function approach to the probabilistic version of the MPP.

CONCLUSIONS

The algorithms introduced here make it possible to solve the MPP also for large trees with high-degree vertices. This has practical relevance in the field of comparative phylogenetics and, for example, in the context of phylogenetic targeting, i.e., data collection with resource limitations.

摘要

背景

最大配对问题(MPP)是一类组合优化问题的原型,在生物信息学中备受关注:给定一棵任意的系统发育树T以及任意两对叶子节点(x,y)之间路径的权重ωxy,能使总权重最大的叶子节点对之间的边不相交路径集合是什么?之前已经描述了二叉树和等权重情况下MPP的特殊情况;然而,解决一般MPP的算法仍然缺失。

结果

我们针对二叉树的特殊情况描述了一种相对简单的动态规划算法。然后我们表明,多叉树的一般情况可以通过将某些辅助最大加权匹配问题的解决方案与这种动态规划方法的扩展交织起来处理,从而得到一个关于叶子节点数量n的复杂度为(n4 log n)的整体多项式时间解决方案。可以在GNU公共许可证下从http://www.bioinf.uni-leipzig.de/Software/Targeting获取C实现的源代码。对于二叉树,我们还讨论了MPP的几种受限变体以及MPP概率版本的配分函数方法。

结论

这里介绍的算法使得也能够解决具有高度数顶点的大树的MPP。这在比较系统发育学领域具有实际意义,例如在系统发育靶向的背景下,即在资源有限的数据收集方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8753/2902485/cb54c4724f27/1748-7188-5-25-1.jpg

相似文献

2
Encoding phylogenetic trees in terms of weighted quartets.
J Math Biol. 2008 Apr;56(4):465-77. doi: 10.1007/s00285-007-0125-3. Epub 2007 Sep 21.
3
Partition function and base pairing probabilities for RNA-RNA interaction prediction.
Bioinformatics. 2009 Oct 15;25(20):2646-54. doi: 10.1093/bioinformatics/btp481. Epub 2009 Aug 11.
4
Efficient FPT Algorithms for (Strict) Compatibility of Unrooted Phylogenetic Trees.
Bull Math Biol. 2017 Apr;79(4):920-938. doi: 10.1007/s11538-017-0260-y. Epub 2017 Feb 28.
5
Inferring optimal species trees under gene duplication and loss.
Pac Symp Biocomput. 2013:250-61. doi: 10.1142/9789814447973_0025.
6
Computing a Consensus Phylogeny via Leaf Removal.
J Comput Biol. 2020 Feb;27(2):175-188. doi: 10.1089/cmb.2019.0269. Epub 2019 Oct 23.
8
Treewidth-based algorithms for the small parsimony problem on networks.
Algorithms Mol Biol. 2022 Aug 20;17(1):15. doi: 10.1186/s13015-022-00216-w.
9
Computing nearest neighbour interchange distances between ranked phylogenetic trees.
J Math Biol. 2021 Jan 25;82(1-2):8. doi: 10.1007/s00285-021-01567-5.
10
Inferring phylogenetic networks from multifurcating trees via cherry picking and machine learning.
Mol Phylogenet Evol. 2024 Oct;199:108137. doi: 10.1016/j.ympev.2024.108137. Epub 2024 Jul 17.

引用本文的文献

1
Molecular function limits divergent protein evolution on planetary timescales.
Elife. 2019 Sep 18;8:e39705. doi: 10.7554/eLife.39705.

本文引用的文献

1
Phylogenetic targeting of research effort in evolutionary biology.
Am Nat. 2010 Nov;176(5):601-12. doi: 10.1086/656490.
2
3
The delayed rise of present-day mammals.
Nature. 2007 Mar 29;446(7135):507-12. doi: 10.1038/nature05634.
4
Versatile and declarative dynamic programming using pair algebras.
BMC Bioinformatics. 2005 Sep 12;6:224. doi: 10.1186/1471-2105-6-224.
5
The challenge of constructing large phylogenetic trees.
Trends Plant Sci. 2003 Aug;8(8):374-9. doi: 10.1016/S1360-1385(03)00165-1.
6
Comparative functional analysis of skull morphology of tree-gouging primates.
Am J Phys Anthropol. 2003 Feb;120(2):153-70. doi: 10.1002/ajpa.10129.
7
Stochastic pairwise alignments.
Bioinformatics. 2002;18 Suppl 2:S153-60. doi: 10.1093/bioinformatics/18.suppl_2.s153.
8
Life-history correlates of the evolution of live bearing in fishes.
Philos Trans R Soc Lond B Biol Sci. 2002 Mar 29;357(1419):259-67. doi: 10.1098/rstb.2001.0958.
9
Taxon sampling, correlated evolution, and independent contrasts.
Evolution. 2000 Oct;54(5):1480-92. doi: 10.1111/j.0014-3820.2000.tb00694.x.
10
Testing character correlation using pairwise comparisons on a phylogeny.
J Theor Biol. 2000 Feb 7;202(3):195-204. doi: 10.1006/jtbi.1999.1050.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验