Suppr超能文献

用于无根系统发育树(严格)兼容性的高效固定参数可解算法

Efficient FPT Algorithms for (Strict) Compatibility of Unrooted Phylogenetic Trees.

作者信息

Baste Julien, Paul Christophe, Sau Ignasi, Scornavacca Celine

机构信息

LIRMM, CNRS, Université de Montpellier, Montpellier, France.

ISE-M, IBC, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France.

出版信息

Bull Math Biol. 2017 Apr;79(4):920-938. doi: 10.1007/s11538-017-0260-y. Epub 2017 Feb 28.

Abstract

In phylogenetics, a central problem is to infer the evolutionary relationships between a set of species X; these relationships are often depicted via a phylogenetic tree-a tree having its leaves labeled bijectively by elements of X and without degree-2 nodes-called the "species tree." One common approach for reconstructing a species tree consists in first constructing several phylogenetic trees from primary data (e.g., DNA sequences originating from some species in X), and then constructing a single phylogenetic tree maximizing the "concordance" with the input trees. The obtained tree is our estimation of the species tree and, when the input trees are defined on overlapping-but not identical-sets of labels, is called "supertree." In this paper, we focus on two problems that are central when combining phylogenetic trees into a supertree: the compatibility and the strict compatibility problems for unrooted phylogenetic trees. These problems are strongly related, respectively, to the notions of "containing as a minor" and "containing as a topological minor" in the graph community. Both problems are known to be fixed parameter tractable in the number of input trees k, by using their expressibility in monadic second-order logic and a reduction to graphs of bounded treewidth. Motivated by the fact that the dependency on k of these algorithms is prohibitively large, we give the first explicit dynamic programming algorithms for solving these problems, both running in time [Formula: see text], where n is the total size of the input.

摘要

在系统发育学中,一个核心问题是推断一组物种(X)之间的进化关系;这些关系通常通过系统发育树来描绘——一棵树,其叶子由(X)的元素双射标记且没有二度节点——称为“物种树”。重建物种树的一种常见方法是首先从原始数据(例如,源自(X)中某些物种的DNA序列)构建几个系统发育树,然后构建一个单一的系统发育树,使其与输入树的“一致性”最大化。得到的树就是我们对物种树的估计,当输入树是在重叠但不相同的标签集上定义时,称为“超树”。在本文中,我们关注将系统发育树组合成超树时的两个核心问题:无根系统发育树的兼容性和严格兼容性问题。这些问题分别与图论领域中“包含作为子图”和“包含作为拓扑子图”的概念密切相关。已知通过利用它们在一元二阶逻辑中的可表达性以及归约到有界树宽的图,这两个问题在输入树的数量(k)上都是固定参数可处理的。鉴于这些算法对(k)的依赖性极大,我们给出了第一个明确的动态规划算法来解决这些问题,两者的运行时间均为([公式:见正文]),其中(n)是输入的总大小。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验