Institut für Systematische Botanik, Universität Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland.
Syst Biol. 2009 Feb;58(1):55-73. doi: 10.1093/sysbio/syp010. Epub 2009 Jun 4.
Although polyploidy plays a fundamental role in plant evolution, the elucidation of polyploid origins is fraught with methodological challenges. For example, allopolyploid species may confound phylogenetic reconstruction because commonly used methods are designed to trace divergent, rather than reticulate patterns. Recently developed techniques of phylogenetic network estimation allow for a more effective identification of incongruence among trees. However, incongruence can also be caused by incomplete lineage sorting, paralogy, concerted evolution, and recombination. Thus, initial hypotheses of hybridization need to be examined via additional sources of evidence, including the partitioning of infraspecific genetic polymorphisms, morphological characteristics, chromosome numbers, crossing experiments, and distributional patterns. Primula sect. Aleuritia subsect. Aleuritia (Aleuritia) represents an ideal case study to examine reticulation because specific hypotheses have been derived from morphology, karyology, interfertility, and distribution to explain the observed variation of ploidy levels, ranging from diploidy to 14-ploidy. Sequences from 5 chloroplast and 1 nuclear ribosomal DNA (nrDNA) markers were analyzed to generate the respective phylogenies and consensus networks. Furthermore, extensive cloning of the nrDNA marker allowed for the identification of shared nucleotides at polymorphic sites, investigation of infraspecific genetic polymorphisms via principal coordinate analyses PCoAs, and detection of recombination between putative progenitor sequences. The results suggest that most surveyed polyploids originated via hybridization and that 2 taxonomic species formed recurrently from different progenitors, findings that are congruent with the expectations of speciation via secondary contact. Overall, the study highlights the importance of using multiple experimental and analytical approaches to disentangle complex patterns of reticulation.
尽管多倍体在植物进化中起着至关重要的作用,但多倍体起源的阐明充满了方法学上的挑战。例如,异源多倍体物种可能会混淆系统发育重建,因为常用的方法旨在追踪分歧的模式,而不是网状模式。最近发展起来的系统发育网络估计技术允许更有效地识别树之间的不一致。然而,不一致也可能是由不完全谱系分选、同源性、协同进化和重组引起的。因此,需要通过其他证据来源,包括种内遗传多态性、形态特征、染色体数目、杂交实验和分布模式的划分,来检验杂交的初始假设。报春花属 Aleuritia 亚属 Aleuritia (Aleuritia) 代表了一个理想的案例研究,以检验网状进化,因为具体的假设已经从形态学、细胞学、可育性和分布中得出,以解释观察到的多倍体水平的变异,从二倍体到 14 倍体。分析了来自 5 个叶绿体和 1 个核核糖体 DNA(nrDNA)标记的序列,以生成各自的系统发育和共识网络。此外,对 nrDNA 标记进行了广泛的克隆,以鉴定多态性位点的共享核苷酸,通过主坐标分析(PCoAs)研究种内遗传多态性,并检测假定祖序列之间的重组。结果表明,大多数调查的多倍体是通过杂交产生的,并且 2 个分类物种经常由不同的祖先形成,这一发现与通过二次接触形成物种的预期一致。总的来说,该研究强调了使用多种实验和分析方法来理清复杂的网状进化模式的重要性。