Suppr超能文献

GABA 能抑制的成熟促进会聚通路上时间相干输入的增强。

Maturation of GABAergic inhibition promotes strengthening of temporally coherent inputs among convergent pathways.

机构信息

Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.

出版信息

PLoS Comput Biol. 2010 Jun 3;6(6):e1000797. doi: 10.1371/journal.pcbi.1000797.

Abstract

Spike-timing-dependent plasticity (STDP), a form of Hebbian plasticity, is inherently stabilizing. Whether and how GABAergic inhibition influences STDP is not well understood. Using a model neuron driven by converging inputs modifiable by STDP, we determined that a sufficient level of inhibition was critical to ensure that temporal coherence (correlation among presynaptic spike times) of synaptic inputs, rather than initial strength or number of inputs within a pathway, controlled postsynaptic spike timing. Inhibition exerted this effect by preferentially reducing synaptic efficacy, the ability of inputs to evoke postsynaptic action potentials, of the less coherent inputs. In visual cortical slices, inhibition potently reduced synaptic efficacy at ages during but not before the critical period of ocular dominance (OD) plasticity. Whole-cell recordings revealed that the amplitude of unitary IPSCs from parvalbumin positive (Pv+) interneurons to pyramidal neurons increased during the critical period, while the synaptic decay time-constant decreased. In addition, intrinsic properties of Pv+ interneurons matured, resulting in an increase in instantaneous firing rate. Our results suggest that maturation of inhibition in visual cortex ensures that the temporally coherent inputs (e.g. those from the open eye during monocular deprivation) control postsynaptic spike times of binocular neurons, a prerequisite for Hebbian mechanisms to induce OD plasticity.

摘要

尖峰时间依赖可塑性(STDP)是一种赫布可塑性,本质上是稳定的。GABA 能抑制是否以及如何影响 STDP 还不是很清楚。我们使用一个由可通过 STDP 修饰的会聚输入驱动的模型神经元,确定了足够水平的抑制是至关重要的,以确保突触输入的时间相干性(突触前尖峰时间之间的相关性),而不是通路内的初始强度或输入数量,控制突触后尖峰时间。抑制通过优先降低突触效能来发挥这种作用,即输入引发突触后动作电位的能力,对于不太相干的输入。在视觉皮质切片中,抑制在眼优势(OD)可塑性的关键期内而不是之前强烈降低突触效能。全细胞记录显示,在关键期内,来自 Parvalbumin 阳性(Pv+)中间神经元到锥体神经元的单位 IPSC 的幅度增加,而突触衰减时间常数减小。此外,Pv+中间神经元的内在特性成熟,导致瞬时放电率增加。我们的结果表明,视觉皮层中抑制的成熟确保了时间相干性输入(例如,在单眼剥夺期间来自睁开的眼睛的输入)控制双眼神经元的突触后尖峰时间,这是赫布机制诱导 OD 可塑性的前提。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64f2/2880567/0cba5192a566/pcbi.1000797.g001.jpg

相似文献

1
Maturation of GABAergic inhibition promotes strengthening of temporally coherent inputs among convergent pathways.
PLoS Comput Biol. 2010 Jun 3;6(6):e1000797. doi: 10.1371/journal.pcbi.1000797.
2
Partial Breakdown of Input Specificity of STDP at Individual Synapses Promotes New Learning.
J Neurosci. 2016 Aug 24;36(34):8842-55. doi: 10.1523/JNEUROSCI.0552-16.2016.
3
Binocular input coincidence mediates critical period plasticity in the mouse primary visual cortex.
J Neurosci. 2014 Feb 19;34(8):2940-55. doi: 10.1523/JNEUROSCI.2640-13.2014.
6
Spike-timing-dependent synaptic modification induced by natural spike trains.
Nature. 2002 Mar 28;416(6879):433-8. doi: 10.1038/416433a.
8
Inhibitory synaptic plasticity regulates pyramidal neuron spiking in the rodent hippocampus.
Neuroscience. 2008 Jul 31;155(1):64-75. doi: 10.1016/j.neuroscience.2008.05.009. Epub 2008 May 21.
9
Intrinsic stability of temporally shifted spike-timing dependent plasticity.
PLoS Comput Biol. 2010 Nov 4;6(11):e1000961. doi: 10.1371/journal.pcbi.1000961.

引用本文的文献

1
Asynchronous development of the mouse auditory cortex is driven by hemispheric identity and sex.
Nat Commun. 2025 Apr 17;16(1):3654. doi: 10.1038/s41467-025-58891-3.
2
Parvalbumin-Positive Interneurons Regulate Cortical Sensory Plasticity in Adulthood and Development Through Shared Mechanisms.
Front Neural Circuits. 2022 May 6;16:886629. doi: 10.3389/fncir.2022.886629. eCollection 2022.
3
Step by step: cells with multiple functions in cortical circuit assembly.
Nat Rev Neurosci. 2022 Jul;23(7):395-410. doi: 10.1038/s41583-022-00585-6. Epub 2022 Apr 14.
4
Implications of Extended Inhibitory Neuron Development.
Int J Mol Sci. 2021 May 12;22(10):5113. doi: 10.3390/ijms22105113.
6
Stability in the Face of Change: Lifelong Experience-Dependent Plasticity in the Sensory Cortex.
Front Cell Neurosci. 2020 Apr 21;14:76. doi: 10.3389/fncel.2020.00076. eCollection 2020.
7
Synaptic plasticity onto inhibitory neurons as a mechanism for ocular dominance plasticity.
PLoS Comput Biol. 2019 Mar 12;15(3):e1006834. doi: 10.1371/journal.pcbi.1006834. eCollection 2019 Mar.
8
Multiple long-range inputs evoke NMDA currents in prefrontal cortex fast-spiking interneurons.
Neuropsychopharmacology. 2018 Sep;43(10):2101-2108. doi: 10.1038/s41386-018-0029-5. Epub 2018 Feb 26.
9
Neuregulin directed molecular mechanisms of visual cortical plasticity.
J Comp Neurol. 2019 Feb 15;527(3):668-678. doi: 10.1002/cne.24414. Epub 2018 Mar 9.

本文引用的文献

1
Difference in binocularity and ocular dominance plasticity between GABAergic and excitatory cortical neurons.
J Neurosci. 2010 Jan 27;30(4):1551-9. doi: 10.1523/JNEUROSCI.5025-09.2010.
2
Bidirectional plasticity in fast-spiking GABA circuits by visual experience.
Nature. 2009 Nov 12;462(7270):218-21. doi: 10.1038/nature08485.
3
Essential role for a long-term depression mechanism in ocular dominance plasticity.
Proc Natl Acad Sci U S A. 2009 Jun 16;106(24):9860-5. doi: 10.1073/pnas.0901305106. Epub 2009 May 22.
4
Thalamic activity that drives visual cortical plasticity.
Nat Neurosci. 2009 Apr;12(4):390-2. doi: 10.1038/nn.2284. Epub 2009 Mar 1.
5
Delayed plasticity of inhibitory neurons in developing visual cortex.
Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16797-802. doi: 10.1073/pnas.0806159105. Epub 2008 Oct 21.
8
In vitro and in vivo measures of evoked excitatory and inhibitory conductance dynamics in sensory cortices.
J Neurosci Methods. 2008 Apr 30;169(2):323-65. doi: 10.1016/j.jneumeth.2007.11.008. Epub 2007 Nov 22.
9
Neuromodulators control the polarity of spike-timing-dependent synaptic plasticity.
Neuron. 2007 Sep 20;55(6):919-29. doi: 10.1016/j.neuron.2007.08.013.
10
Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity.
Neuron. 2007 Jun 21;54(6):961-72. doi: 10.1016/j.neuron.2007.05.028.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验