Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.
PLoS Comput Biol. 2010 Jun 3;6(6):e1000797. doi: 10.1371/journal.pcbi.1000797.
Spike-timing-dependent plasticity (STDP), a form of Hebbian plasticity, is inherently stabilizing. Whether and how GABAergic inhibition influences STDP is not well understood. Using a model neuron driven by converging inputs modifiable by STDP, we determined that a sufficient level of inhibition was critical to ensure that temporal coherence (correlation among presynaptic spike times) of synaptic inputs, rather than initial strength or number of inputs within a pathway, controlled postsynaptic spike timing. Inhibition exerted this effect by preferentially reducing synaptic efficacy, the ability of inputs to evoke postsynaptic action potentials, of the less coherent inputs. In visual cortical slices, inhibition potently reduced synaptic efficacy at ages during but not before the critical period of ocular dominance (OD) plasticity. Whole-cell recordings revealed that the amplitude of unitary IPSCs from parvalbumin positive (Pv+) interneurons to pyramidal neurons increased during the critical period, while the synaptic decay time-constant decreased. In addition, intrinsic properties of Pv+ interneurons matured, resulting in an increase in instantaneous firing rate. Our results suggest that maturation of inhibition in visual cortex ensures that the temporally coherent inputs (e.g. those from the open eye during monocular deprivation) control postsynaptic spike times of binocular neurons, a prerequisite for Hebbian mechanisms to induce OD plasticity.
尖峰时间依赖可塑性(STDP)是一种赫布可塑性,本质上是稳定的。GABA 能抑制是否以及如何影响 STDP 还不是很清楚。我们使用一个由可通过 STDP 修饰的会聚输入驱动的模型神经元,确定了足够水平的抑制是至关重要的,以确保突触输入的时间相干性(突触前尖峰时间之间的相关性),而不是通路内的初始强度或输入数量,控制突触后尖峰时间。抑制通过优先降低突触效能来发挥这种作用,即输入引发突触后动作电位的能力,对于不太相干的输入。在视觉皮质切片中,抑制在眼优势(OD)可塑性的关键期内而不是之前强烈降低突触效能。全细胞记录显示,在关键期内,来自 Parvalbumin 阳性(Pv+)中间神经元到锥体神经元的单位 IPSC 的幅度增加,而突触衰减时间常数减小。此外,Pv+中间神经元的内在特性成熟,导致瞬时放电率增加。我们的结果表明,视觉皮层中抑制的成熟确保了时间相干性输入(例如,在单眼剥夺期间来自睁开的眼睛的输入)控制双眼神经元的突触后尖峰时间,这是赫布机制诱导 OD 可塑性的前提。