Suppr超能文献

在蟋蟀(直翅目)听觉系统的连续水平上的频率处理。

Frequency processing at consecutive levels in the auditory system of bush crickets (tettigoniidae).

机构信息

Georg-August-University Göttingen, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Cellular Neurobiology, 37073 Göttingen, Germany.

出版信息

J Comp Neurol. 2010 Aug 1;518(15):3101-16. doi: 10.1002/cne.22385.

Abstract

We asked how processing of male signals in the auditory pathway of the bush cricket Ancistrura nigrovittata (Phaneropterinae, Tettigoniidae) changes from the ear to the brain. From 37 sensory neurons in the crista acustica single elements (cells 8 or 9) have frequency tuning corresponding closely to the behavioral tuning of the females. Nevertheless, one-quarter of sensory neurons (approximately cells 9 to 18) excite the ascending neuron 1 (AN1), which is best tuned to the male's song carrier frequency. AN1 receives frequency-dependent inhibition, reducing sensitivity especially in the ultrasound. When recorded in the brain, AN1 shows slightly lower overall activity than when recorded in the prothoracic ganglion close to the spike-generating zone. This difference is significant in the ultrasonic range. The first identified local brain neuron in a bush cricket (LBN1) is described. Its dendrites overlap with some of AN1-terminations in the brain. Its frequency tuning and intensity dependence strongly suggest a direct postsynaptic connection to AN1. Spiking in LBN1 is only elicited after summation of excitatory postsynaptic potentials evoked by individual AN1-action potentials. This serves a filtering mechanism that reduces the sensitivity of LBN1 and also its responsiveness to ultrasound as compared to AN1. Consequently, spike latencies of LBN1 are long (>30 ms) despite its being a second-order interneuron. Additionally, LBN1 receives frequency-specific inhibition, most likely further reducing its responses to ultrasound. This demonstrates that frequency-specific inhibition is redundant in two directly connected interneurons on subsequent levels in the auditory system.

摘要

我们研究了雄性信号在 Bushcricket(直翅目,蟋蟀科)听觉通路中的处理方式如何从耳朵传递到大脑。在听觉嵴的 37 个感觉神经元中,单一元素(细胞 8 或 9)的频率调谐与雌性的行为调谐非常接近。然而,四分之一的感觉神经元(大约是细胞 9 到 18)会激发上行神经元 1(AN1),它对雄性歌声载波频率的调谐最佳。AN1 受到频率依赖性抑制,特别是在超声范围内降低了敏感性。当在大脑中记录时,AN1 的整体活性略低于在靠近产生尖峰的前胸神经节中记录时。这种差异在超声范围内具有统计学意义。描述了 Bushcricket 中第一个被识别的局部脑神经元(LBN1)。其树突与大脑中一些 AN1 终止处重叠。其频率调谐和强度依赖性强烈表明与 AN1 存在直接的突触后连接。仅在个体 AN1 动作电位诱发的兴奋性突触后电位总和后,LBN1 才会产生尖峰。这起到了一种滤波机制,降低了 LBN1 的敏感性,也降低了其对超声的响应性,与 AN1 相比。因此,尽管 LBN1 是二级中间神经元,但尖峰潜伏期很长(>30ms)。此外,LBN1 还受到频率特异性抑制,很可能进一步降低其对超声的反应。这表明在听觉系统的后续水平上,两个直接连接的中间神经元中,频率特异性抑制是冗余的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验