Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
Chemistry. 2010 Jun 25;16(24):7114-20. doi: 10.1002/chem.200903215.
Au nanoparticles (NPs) functionalized with thioaniline and cysteine are used to assemble bis-aniline-bridged Au-NP composites on Au surfaces using an electropolymerization process. During the polymerization of the functionalized Au NPs in the presence of different amino acids, for example, L-glutamic acid, L-aspartic acid, L-histidine, and L-phenylalanine, zwitterionic interactions between the amino acids and the cysteine units linked to the particles lead to the formation of molecularly imprinted sites in the electropolymerized Au-NP composites. Following the elimination of the template amino acid molecules, the electropolymerized matrices reveal selective recognition and binding capabilities toward the imprinted amino acid. Furthermore, by imprinting of L-glutamic or D-glutamic acids, chiroselective imprinted sites are generated in the Au-NP composites. The binding of amino acids to the imprinted recognition sites was followed by surface plasmon resonance spectroscopy. The refractive index changes occurring upon the binding of the amino acids to the imprinted sites are amplified by the coupling between the localized plasmon associated with the Au NPs and the surface plasmon wave.
用硫代苯胺和半胱氨酸功能化的金纳米颗粒(Au NPs)被用来在 Au 表面上使用电聚合过程组装双苯胺桥接的 Au-NP 复合材料。在存在不同氨基酸的情况下,例如 L-谷氨酸、L-天冬氨酸、L-组氨酸和 L-苯丙氨酸,氨基酸与连接到颗粒上的半胱氨酸单元之间的两性离子相互作用导致在电聚合的 Au-NP 复合材料中形成分子印迹位点。在模板氨基酸分子被除去之后,电聚合的基质对印迹氨基酸表现出选择性识别和结合能力。此外,通过 L-谷氨酸或 D-谷氨酸的印迹,可以在 Au-NP 复合材料中产生手性印迹位点。通过表面等离子体共振光谱跟踪氨基酸与印迹识别位点的结合。氨基酸与印迹位点结合时发生的折射率变化通过与 Au NPs 相关的局域等离子体与表面等离子体波之间的耦合来放大。