Suppr超能文献

一项作为肿瘤反应评估方法的体积测量辅助生物标志物开发的初步研究。

A pilot study of volume measurement as a method of tumor response evaluation to aid biomarker development.

机构信息

Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.

出版信息

Clin Cancer Res. 2010 Sep 15;16(18):4647-53. doi: 10.1158/1078-0432.CCR-10-0125. Epub 2010 Jun 9.

Abstract

PURPOSE

Tissue biomarker discovery is potentially limited by conventional tumor measurement techniques, which have an uncertain ability to accurately distinguish sensitive and resistant tumors. Semiautomated volumetric measurement of computed tomography imaging has the potential to more accurately capture tumor growth dynamics, allowing for more exact separation of sensitive and resistant tumors and a more accurate comparison of tissue characteristics.

EXPERIMENTAL DESIGN

Forty-eight patients with early stage non-small cell lung cancer and clinical characteristics of sensitivity to gefitinib were studied. High-resolution computed tomography was done at baseline and after 3 weeks of gefitinib. Tumors were then resected and molecularly profiled. Unidimensional and volumetric measurements were done using a semiautomated algorithm. Measurement changes were evaluated for their ability to differentiate tumors with and without sensitizing mutations.

RESULTS

Forty-four percent of tumors had epidermal growth factor receptor-sensitizing mutations. Receiver operating characteristic curve analysis showed that volumetric measurement had a higher area under the curve than unidimensional measurement for identifying tumors harboring sensitizing mutations (P = 0.009). Tumor volume decrease of >24.9% was the imaging criteria best able to classify tumors with and without sensitizing mutations (sensitivity, 90%; specificity, 89%).

CONCLUSIONS

Volumetric tumor measurement was better than unidimensional tumor measurement at distinguishing tumors based on presence or absence of a sensitizing mutation. Use of volume-based response assessment for the development of tissue biomarkers could reduce contamination between sensitive and resistant tumor populations, improving our ability to identify meaningful predictors of sensitivity.

摘要

目的

组织生物标志物的发现可能受到传统肿瘤测量技术的限制,这些技术在准确区分敏感肿瘤和耐药肿瘤方面的能力存在不确定性。计算机断层扫描成像的半自动容积测量具有更准确地捕捉肿瘤生长动态的潜力,从而更准确地分离敏感肿瘤和耐药肿瘤,并更准确地比较组织特征。

实验设计

研究了 48 例具有吉非替尼敏感性临床特征的早期非小细胞肺癌患者。在吉非替尼治疗 3 周前和之后进行高分辨率计算机断层扫描。然后切除肿瘤并进行分子分析。使用半自动算法进行一维和容积测量。评估测量变化区分具有和不具有致敏突变的肿瘤的能力。

结果

44%的肿瘤具有表皮生长因子受体致敏突变。受试者工作特征曲线分析表明,容积测量在识别具有致敏突变的肿瘤方面比一维测量具有更高的曲线下面积(P = 0.009)。肿瘤体积减少>24.9%是能够最好地对具有和不具有致敏突变的肿瘤进行分类的成像标准(敏感性为 90%,特异性为 89%)。

结论

容积肿瘤测量在基于存在或不存在致敏突变来区分肿瘤方面优于一维肿瘤测量。使用基于体积的反应评估来开发组织生物标志物可以减少敏感和耐药肿瘤群体之间的污染,提高我们识别有意义的敏感性预测因子的能力。

相似文献

引用本文的文献

本文引用的文献

6
Screening for epidermal growth factor receptor mutations in lung cancer.肺癌中表皮生长因子受体突变的筛查
N Engl J Med. 2009 Sep 3;361(10):958-67. doi: 10.1056/NEJMoa0904554. Epub 2009 Aug 19.
7
Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma.吉非替尼或卡铂-紫杉醇用于治疗肺腺癌。
N Engl J Med. 2009 Sep 3;361(10):947-57. doi: 10.1056/NEJMoa0810699. Epub 2009 Aug 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验