Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA.
J Neurosci. 2010 Jun 9;30(23):7793-803. doi: 10.1523/JNEUROSCI.0577-10.2010.
Fragile X syndrome (FXS) causes mental impairment and autism through transcriptional silencing of the Fmr1 gene, resulting in the loss of the RNA-binding protein fragile X mental retardation protein (FMRP). Cortical pyramidal neurons in affected individuals and Fmr1 knock-out (KO) mice have an increased density of dendritic spines. The mutant mice also show defects in synaptic and experience-dependent circuit plasticity, which are known to be mediated in part by dendritic spine dynamics. We used in vivo time-lapse imaging with two-photon microscopy through cranial windows in male and female neonatal mice to test the hypothesis that dynamics of dendritic protrusions are altered in KO mice during early postnatal development. We find that layer 2/3 neurons from wild-type mice exhibit a rapid decrease in dendritic spine dynamics during the first 2 postnatal weeks, as immature filopodia are replaced by mushroom spines. In contrast, KO mice show a developmental delay in the downregulation of spine turnover and in the transition from immature to mature spine subtypes. Blockade of metabotropic glutamate receptor (mGluR) signaling, which reverses some adult phenotypes of KO mice, accentuated this immature protrusion phenotype in KO mice. Thus, absence of FMRP delays spine stabilization and dysregulated mGluR signaling in FXS may partially normalize this early synaptic defect.
脆性 X 综合征(FXS)通过 Fmr1 基因的转录沉默导致精神发育迟滞蛋白(FMRP)的丢失,从而引起精神损害和自闭症。受影响个体和 Fmr1 敲除(KO)小鼠的皮质锥体神经元的树突棘密度增加。突变小鼠还表现出突触和经验依赖性电路可塑性的缺陷,已知这些缺陷部分是由树突棘动力学介导的。我们使用颅窗内的双光子显微镜进行体内延时成像,以测试以下假设:在新生雄性和雌性小鼠的 KO 小鼠中,树突状突起的动力学在出生后早期发育过程中发生改变。我们发现,野生型小鼠的第 2/3 层神经元在出生后的前 2 周内表现出树突棘动力学的快速下降,因为不成熟的丝状伪足被蘑菇状棘取代。相比之下,KO 小鼠在下调棘突周转率和从不成熟到成熟棘突亚型的转变方面存在发育延迟。代谢型谷氨酸受体(mGluR)信号转导的阻断,可逆转 KO 小鼠的一些成年表型,这会使 KO 小鼠的不成熟突起表型更加明显。因此,FMRP 的缺失会延迟 FXS 中的棘突稳定和调节失常的 mGluR 信号,这可能部分纠正这种早期突触缺陷。