Suppr超能文献

从呼吸和发酵酵母中分离的线粒体中铁的生物物理特性。

Biophysical characterization of iron in mitochondria isolated from respiring and fermenting yeast.

机构信息

Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, USA.

出版信息

Biochemistry. 2010 Jul 6;49(26):5436-44. doi: 10.1021/bi100558z.

Abstract

The distributions of Fe in mitochondria isolated from respiring, respiro-fermenting, and fermenting yeast cells were determined with an integrative biophysical approach involving Mossbauer and electronic absorption spectroscopies, electron paramagnetic resonance, and inductively coupled plasma emission mass spectrometry. Approximately 40% of the Fe in mitochondria from respiring cells was present in respiration-related proteins. The concentration and distribution of Fe in respiro-fermenting mitochondria, where both respiration and fermentation occur concurrently, were similar to those of respiring mitochondria. The concentration of Fe in fermenting mitochondria was also similar, but the distribution differed dramatically. Here, levels of respiration-related Fe-containing proteins were diminished approximately 3-fold, while non-heme HS Fe(II) species, non-heme mononuclear HS Fe(III), and Fe(III) nanoparticles dominated. These changes were rationalized by a model in which the pool of non-heme HS Fe(II) ions serves as feedstock for Fe-S cluster and heme biosynthesis. The integrative approach enabled us to estimate the concentration of respiration-related proteins.

摘要

采用包含 Mössbauer 和电子吸收光谱、电子顺磁共振以及电感耦合等离子体发射质谱学的综合生物物理方法,测定了来自进行呼吸作用、兼性发酵和发酵的酵母细胞的线粒体中 Fe 的分布。来自进行呼吸作用的细胞的线粒体中约有 40%的 Fe 存在于与呼吸作用相关的蛋白质中。兼性发酵线粒体中 Fe 的浓度和分布与进行呼吸作用的线粒体相似,在兼性发酵中,同时发生呼吸作用和发酵。发酵线粒体中的 Fe 浓度也相似,但分布却大不相同。在这里,与呼吸作用相关的含 Fe 蛋白的水平降低了约 3 倍,而非血红素 HS Fe(II)物种、非血红素单核 HS Fe(III)和 Fe(III)纳米颗粒占主导地位。通过一个模型可以解释这些变化,该模型认为非血红素 HS Fe(II)离子池是 Fe-S 簇和血红素生物合成的原料。综合方法使我们能够估计与呼吸作用相关的蛋白质的浓度。

相似文献

2
Biophysical investigation of the ironome of human jurkat cells and mitochondria.
Biochemistry. 2012 Jul 3;51(26):5276-84. doi: 10.1021/bi300382d. Epub 2012 Jun 22.
3
Mössbauer and LC-ICP-MS investigation of iron trafficking between vacuoles and mitochondria in vma2ΔSaccharomyces cerevisiae.
J Biol Chem. 2021 Jan-Jun;296:100141. doi: 10.1074/jbc.RA120.015907. Epub 2020 Dec 6.
4
Recovery of mrs3Δmrs4Δ Saccharomyces cerevisiae Cells under Iron-Sufficient Conditions and the Role of Fe.
Biochemistry. 2018 Feb 6;57(5):672-683. doi: 10.1021/acs.biochem.7b01034. Epub 2018 Jan 4.
5
6
Iron content of Saccharomyces cerevisiae cells grown under iron-deficient and iron-overload conditions.
Biochemistry. 2013 Jan 8;52(1):105-14. doi: 10.1021/bi3015339. Epub 2012 Dec 19.
9
Electron paramagnetic resonance and Mössbauer spectroscopy of intact mitochondria from respiring Saccharomyces cerevisiae.
J Biol Inorg Chem. 2007 Sep;12(7):1029-53. doi: 10.1007/s00775-007-0275-1. Epub 2007 Jul 31.
10
Mössbauer and EPR study of iron in vacuoles from fermenting Saccharomyces cerevisiae.
Biochemistry. 2011 Nov 29;50(47):10275-83. doi: 10.1021/bi2014954. Epub 2011 Nov 2.

引用本文的文献

1
A kinetic model of copper homeostasis in Saccharomyces cerevisiae.
J Biol Chem. 2025 Jun 16;301(8):110368. doi: 10.1016/j.jbc.2025.110368.
2
ATH434, a promising iron-targeting compound for treating iron regulation disorders.
Metallomics. 2024 Oct 4;16(10). doi: 10.1093/mtomcs/mfae044.
3
Binding of yeast and human cytochrome c to cardiolipin nanodiscs at physiological ionic strength.
J Inorg Biochem. 2024 Nov;260:112699. doi: 10.1016/j.jinorgbio.2024.112699. Epub 2024 Aug 13.
4
Fluorometric Methods to Measure Bioavailable and Total Heme.
Methods Mol Biol. 2024;2839:151-194. doi: 10.1007/978-1-0716-4043-2_9.
5
Proteomic strategies to interrogate the Fe-S proteome.
Biochim Biophys Acta Mol Cell Res. 2024 Oct;1871(7):119791. doi: 10.1016/j.bbamcr.2024.119791. Epub 2024 Jun 25.
8
Drosophila melanogaster frataxin: protein crystal and predicted solution structure with identification of the iron-binding regions.
Acta Crystallogr D Struct Biol. 2023 Jan 1;79(Pt 1):22-30. doi: 10.1107/S2059798322011639.
9
HRG-9 homologues regulate haem trafficking from haem-enriched compartments.
Nature. 2022 Oct;610(7933):768-774. doi: 10.1038/s41586-022-05347-z. Epub 2022 Oct 19.

本文引用的文献

1
3
Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect.
Cell. 2009 Jun 26;137(7):1247-58. doi: 10.1016/j.cell.2009.04.014.
7
Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2.
Mol Cell Biol. 2009 Feb;29(4):1007-16. doi: 10.1128/MCB.01685-08. Epub 2008 Dec 15.
8
EPR and Mössbauer spectroscopy of intact mitochondria isolated from Yah1p-depleted Saccharomyces cerevisiae.
Biochemistry. 2008 Sep 16;47(37):9888-99. doi: 10.1021/bi801047q. Epub 2008 Aug 22.
10
Iron-sulfur cluster biogenesis and human disease.
Trends Genet. 2008 Aug;24(8):398-407. doi: 10.1016/j.tig.2008.05.008. Epub 2008 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验