Suppr超能文献

通过线粒体铁转运蛋白1和线粒体铁转运蛋白2的差异周转来调节线粒体铁输入

Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2.

作者信息

Paradkar Prasad N, Zumbrennen Kimberley B, Paw Barry H, Ward Diane M, Kaplan Jerry

机构信息

Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA.

出版信息

Mol Cell Biol. 2009 Feb;29(4):1007-16. doi: 10.1128/MCB.01685-08. Epub 2008 Dec 15.

Abstract

Mitoferrin 1 and mitoferrin 2 are homologous members of the mitochondrial solute carrier family. Mitoferrin 1 is required for mitochondrial iron delivery in developing erythrocytes. Here we show that mitoferrin 1 and mitoferrin 2 contribute to mitochondrial iron delivery in a variety of cells. Reductions in mitoferrin 1 and/or mitoferrin 2 levels by RNA interference result in decreased mitochondrial iron accumulation, heme synthesis, and iron-sulfur cluster synthesis. The ectopic expression of mitoferrin 1 in nonerythroid cells silenced for mitoferrin 2 or the expression of mitoferrin 2 in cells silenced for mitoferrin 1 restored heme synthesis to "baseline" levels. The ectopic expression of mitoferrin 2, however, did not support hemoglobinization in erythroid cells deficient in mitoferrin 1. Mitoferrin 2 could not restore heme synthesis in developing erythroid cells because of an inability of the protein to accumulate in mitochondria. The half-life of mitoferrin 1 was increased in developing erythroid cells, while the half-life of mitoferrin 2 did not change. These results suggest that mitochondrial iron accumulation is tightly regulated and that controlling mitoferrin levels within the mitochondrial membrane provides a mechanism to regulate mitochondrial iron levels.

摘要

线粒体铁转运蛋白1和线粒体铁转运蛋白2是线粒体溶质载体家族的同源成员。线粒体铁转运蛋白1是发育中的红细胞中线粒体铁传递所必需的。在此我们表明,线粒体铁转运蛋白1和线粒体铁转运蛋白2在多种细胞中都有助于线粒体铁传递。通过RNA干扰降低线粒体铁转运蛋白1和/或线粒体铁转运蛋白2的水平会导致线粒体铁积累、血红素合成及铁硫簇合成减少。在因线粒体铁转运蛋白2沉默而失去该蛋白功能的非红细胞中异位表达线粒体铁转运蛋白1,或者在因线粒体铁转运蛋白1沉默而失去该蛋白功能的细胞中表达线粒体铁转运蛋白2,均可将血红素合成恢复到“基线”水平。然而,在缺乏线粒体铁转运蛋白1的红细胞中,异位表达线粒体铁转运蛋白2并不能支持血红蛋白化。由于该蛋白无法在线粒体中积累,线粒体铁转运蛋白2不能恢复发育中的红细胞中的血红素合成。在发育中的红细胞中线粒体铁转运蛋白1的半衰期延长,而线粒体铁转运蛋白2的半衰期不变。这些结果表明,线粒体铁积累受到严格调控,并且控制线粒体内膜中线粒体铁转运蛋白的水平提供了一种调节线粒体铁水平的机制。

相似文献

1
Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2.
Mol Cell Biol. 2009 Feb;29(4):1007-16. doi: 10.1128/MCB.01685-08. Epub 2008 Dec 15.
2
Mitoferrin is essential for erythroid iron assimilation.
Nature. 2006 Mar 2;440(7080):96-100. doi: 10.1038/nature04512.
3
Reduction of mitoferrin results in abnormal development and extended lifespan in Caenorhabditis elegans.
PLoS One. 2012;7(1):e29666. doi: 10.1371/journal.pone.0029666. Epub 2012 Jan 11.
4
Iron regulatory protein-1 protects against mitoferrin-1-deficient porphyria.
J Biol Chem. 2014 Mar 14;289(11):7835-43. doi: 10.1074/jbc.M114.547778. Epub 2014 Feb 7.
5
Abcb10 physically interacts with mitoferrin-1 (Slc25a37) to enhance its stability and function in the erythroid mitochondria.
Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16263-8. doi: 10.1073/pnas.0904519106. Epub 2009 Sep 4.
6
Image-based quantification of mitochondrial iron uptake via Mitoferrin-2.
Mitochondrion. 2024 Sep;78:101889. doi: 10.1016/j.mito.2024.101889. Epub 2024 Apr 30.
8
Compartmentalization of iron between mitochondria and the cytosol and its regulation.
Eur J Cell Biol. 2015 Jul-Sep;94(7-9):292-308. doi: 10.1016/j.ejcb.2015.05.003. Epub 2015 May 30.
9
The ins and outs of mitochondrial iron-loading: the metabolic defect in Friedreich's ataxia.
J Mol Med (Berl). 2010 Apr;88(4):323-9. doi: 10.1007/s00109-009-0565-x. Epub 2009 Dec 9.
10

引用本文的文献

1
Application of mesenchymal stem cells in ferroptosis-related diseases.
J Mol Med (Berl). 2025 Sep 3. doi: 10.1007/s00109-025-02591-4.
2
Labile iron pool dynamics do not drive ferroptosis potentiation in colorectal cancer cells.
bioRxiv. 2025 Jul 8:2025.07.01.662602. doi: 10.1101/2025.07.01.662602.
3
Increased Expression and m6A Methylation in Myoblasts of Facioscapulohumeral Muscular Dystrophy.
Int J Mol Sci. 2025 May 28;26(11):5170. doi: 10.3390/ijms26115170.
4
Chlorothalonil exposure impacts larval development and adult reproductive performance in .
R Soc Open Sci. 2025 Jun 4;12(6):250136. doi: 10.1098/rsos.250136. eCollection 2025 Jun.
5
Mitochondrial dysfunction: the hidden catalyst in chronic kidney disease progression.
Ren Fail. 2025 Dec;47(1):2506812. doi: 10.1080/0886022X.2025.2506812. Epub 2025 May 29.
6
Ferroptosis and Iron Homeostasis: Molecular Mechanisms and Neurodegenerative Disease Implications.
Antioxidants (Basel). 2025 Apr 28;14(5):527. doi: 10.3390/antiox14050527.
7
Research progress on the mechanism of tumor cell ferroptosis regulation by epigenetics.
Epigenetics. 2025 Dec;20(1):2500949. doi: 10.1080/15592294.2025.2500949. Epub 2025 May 6.
8
Ferroptosis and Its Potential Role in the Physiopathology of Skeletal Muscle Atrophy.
Int J Mol Sci. 2024 Nov 20;25(22):12463. doi: 10.3390/ijms252212463.
10
RNA m6A modification in ferroptosis: implications for advancing tumor immunotherapy.
Mol Cancer. 2024 Sep 28;23(1):213. doi: 10.1186/s12943-024-02132-6.

本文引用的文献

1
Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases.
Annu Rev Biochem. 2008;77:669-700. doi: 10.1146/annurev.biochem.76.052705.162653.
2
Direct interorganellar transfer of iron from endosome to mitochondrion.
Blood. 2007 Jul 1;110(1):125-32. doi: 10.1182/blood-2007-01-068148. Epub 2007 Mar 21.
3
The role of iron regulatory proteins in mammalian iron homeostasis and disease.
Nat Chem Biol. 2006 Aug;2(8):406-14. doi: 10.1038/nchembio807.
4
Biosynthesis of heme in mammals.
Biochim Biophys Acta. 2006 Jul;1763(7):723-36. doi: 10.1016/j.bbamcr.2006.05.005. Epub 2006 Jun 3.
5
Mrs3p, Mrs4p, and frataxin provide iron for Fe-S cluster synthesis in mitochondria.
J Biol Chem. 2006 Aug 11;281(32):22493-502. doi: 10.1074/jbc.M604246200. Epub 2006 Jun 12.
6
Mitoferrin is essential for erythroid iron assimilation.
Nature. 2006 Mar 2;440(7080):96-100. doi: 10.1038/nature04512.
8
Remodeling the regulation of iron metabolism during erythroid differentiation to ensure efficient heme biosynthesis.
Blood. 2006 May 15;107(10):4159-67. doi: 10.1182/blood-2005-05-1809. Epub 2006 Jan 19.
9
Deficiency of glutaredoxin 5 reveals Fe-S clusters are required for vertebrate haem synthesis.
Nature. 2005 Aug 18;436(7053):1035-39. doi: 10.1038/nature03887.
10
The molecular basis of ferroportin-linked hemochromatosis.
Proc Natl Acad Sci U S A. 2005 Jun 21;102(25):8955-60. doi: 10.1073/pnas.0503804102. Epub 2005 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验