Suppr超能文献

Brinkman 方程在软表面电动动力学中的适用性。

On the applicability of the Brinkman equation in soft surface electrokinetics.

机构信息

New Jersey Institute of Technology, Newark, NJ 07102-1982, USA.

出版信息

J Colloid Interface Sci. 2010 Oct 1;350(1):1-4. doi: 10.1016/j.jcis.2010.04.049. Epub 2010 Apr 28.

Abstract

The Stokes equation is commonly used within the field of electrokinetics of hard impermeable surfaces while the Brinkman equation is adopted for tackling hydrodynamics in the framework of soft (permeable) surface electrokinetics (SSE). The latter was initially proposed for modeling the hydrodynamics in so-called hybrid systems that consist of a porous medium and an adjacent fluid phase basically because the conventional Darcy law or Debye and Bueche model initially proposed for that purpose failed to provide the required velocity and shear stress-continuity conditions at the porous media-fluid interface. However, even though the physical background of the Brinkman equation and its boundary conditions have been discussed when applied to the hydrodynamics of hybrid systems, controversy still remains with respect to their applicability in the field of SSE. Indeed, recent experiments pointed out better agreement between shear flow into a regular array of rods oriented across the flow and the solution of the Brinkman equation for hybrid systems providing a stress-jump boundary condition is taken into account (M.F. Tachie et al., J. Fluid. Mech. 493 (2003) 319). As there is identity in the Brinkman model for hybrid systems and for SSE, the question arises whether the above discontinuity of viscous stress must be incorporated or not into SSE modeling. Recent determination of hydrodynamic penetration length lambda(o)(-1) of swollen and collapsed thermo-responsive films (J.F.L. Duval, R. Zimmermann, A.L. Cordeiro, N. Rein, C. Werner, Langmuir 25 (2009) 10691) suggests that there is no need for a cardinal revision of the Brinkman model, although further experimental investigations are required to support such a conclusion. With regard to these experiments, almost complete agreement between independent determination of lambda(o)(-1) by swelling experiments and its derivation according to Brinkman model was obtained.

摘要

斯托克斯方程常用于硬不可渗透表面的电动力学领域,而布赖克曼方程则用于处理软(可渗透)表面电动力学(SSE)中的流体动力学。后者最初是为了模拟所谓的混合系统中的流体动力学而提出的,混合系统由多孔介质和相邻的流体相组成,主要是因为最初为此目的提出的传统达西定律或德拜和布赫模型未能在多孔介质-流体界面提供所需的速度和剪切应力连续性条件。然而,尽管已经讨论了布赖克曼方程及其边界条件在混合系统流体动力学中的物理背景,但对于其在 SSE 领域的适用性仍存在争议。事实上,最近的实验指出,在考虑到采用应力跳跃边界条件的混合系统的布赖克曼方程解时,剪切流进入垂直于流动方向的规则棒阵列的实验结果与布赖克曼方程的解之间存在更好的一致性(M.F. Tachie 等人,J. Fluid. Mech. 493(2003)319)。由于混合系统的布赖克曼模型和 SSE 之间存在一致性,因此出现了一个问题,即是否必须将上述粘性应力不连续性纳入 SSE 建模中。最近对溶胀和塌陷热响应膜的流体动力学渗透长度 lambda(o)(-1)的确定(J.F.L. Duval、R. Zimmermann、A.L. Cordeiro、N. Rein、C. Werner、Langmuir 25(2009)10691)表明,虽然需要进一步的实验研究来支持这一结论,但不需要对布赖克曼模型进行重大修订。关于这些实验,通过溶胀实验独立确定 lambda(o)(-1)及其根据布赖克曼模型的推导几乎完全一致。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验