Brinkley P F, Kowel S T, Chu C
Appl Opt. 1988 Nov 1;27(21):4578-86. doi: 10.1364/AO.27.004578.
The liquid crystal adaptive lens (LCAL) is an electrooptic device that emulates a variable focal length lens. The LCAL focuses light by creating a parabolic refractive-index profile across the aperture of a liquid crystal cell. The focal length is electronically controlled by applying appropriate voltages to the array of independent electrodes, thus grading the refractive index of the liquid crystal material across the aperture. Beam translation perpendicular to the optical beam path is described theoretically and demonstrated. This capability coupled with the LCAL's programmable focal length allows 3-D beam control. Meshing, the smoothing of the refractive index between adjacent electrodes, is a critical parameter in achieving near diffraction-limited optical performance. Using two planar electrodes and a ground plane immersed in an isotropic dielectric as a model, a steady-state dc theoretical computer simulation is compared with experiment. Improvements in the liquid crystal cell design demonstrate improved performance over previous LCALs. A larger number of electrodes creates an image without spatial aliasing within the aperture.
液晶自适应透镜(LCAL)是一种模拟可变焦距透镜的电光装置。LCAL通过在液晶盒的孔径上创建抛物线形折射率分布来聚焦光线。通过向独立电极阵列施加适当的电压来电子控制焦距,从而使液晶材料在孔径上的折射率分级。从理论上描述并演示了垂直于光束路径的光束平移。这种能力与LCAL的可编程焦距相结合可实现三维光束控制。网格划分,即相邻电极之间折射率的平滑处理,是实现近衍射极限光学性能的关键参数。以两个平面电极和一个浸入各向同性电介质中的接地平面为模型,将稳态直流理论计算机模拟与实验进行了比较。液晶盒设计的改进表明其性能优于以前的LCAL。更多数量的电极可在孔径内创建无空间混叠的图像。