Lab. Evolution & Diversité Biologique, UMR 5174, CNRS, Université Toulouse, 118, route de Narbonne, 31062 Toulouse, Cedex 4, France.
Sci Total Environ. 2010 Sep 1;408(19):4211-20. doi: 10.1016/j.scitotenv.2010.04.052. Epub 2010 Jun 11.
The present work describes the ability of two modeling methods, Classification and Regression Tree (CART) and Random Forest (RF), to predict endemic fish assemblages and species richness in the upper Yangtze River, and then to identify the determinant environmental factors contributing to the models. The models included 24 predictor variables and 2 response variables (fish assemblage and species richness) for a total of 46 site units. The predictive quality of the modeling approaches was judged with a leave-one-out validation procedure. There was an average success of 60.9% and 71.7% to assign each site unit to the correct assemblage of fish, and 73% and 84% to explain the variance in species richness, by using CART and RF models, respectively. RF proved to be better than CART in terms of accuracy and efficiency in ecological applications. In any case, the mixed models including both land cover and river characteristic variables were more powerful than either individual one in explaining the endemic fish distribution pattern in the upper Yangtze River. For instance, altitude, slope, length, discharge, runoff, farmland and alpine and sub-alpine meadow played important roles in driving the observed endemic fish assemblage structure, while farmland, slope grassland, discharge, runoff, altitude and drainage area in explaining the observed patterns of endemic species richness. Therefore, the various effects of human activity on natural aquatic ecosystems, in particular, the flow modification of the river and the land use changes may have a considerable effect on the endemic fish distribution patterns on a regional scale.
本研究描述了两种建模方法(分类回归树(CART)和随机森林(RF))预测长江上游特有鱼类群落和物种丰富度的能力,然后确定对模型有贡献的决定环境因素。模型共包含 24 个预测变量和 2 个响应变量(鱼类群落和物种丰富度),共涉及 46 个站点。使用留一法验证程序评估建模方法的预测质量。使用 CART 和 RF 模型,分别有 60.9%和 71.7%的平均成功率可以将每个站点分配到正确的鱼类群落,分别有 73%和 84%的平均成功率可以解释物种丰富度的方差。RF 在准确性和生态应用效率方面均优于 CART。在任何情况下,包含土地覆盖和河流特征变量的混合模型在解释长江上游特有鱼类分布模式方面都比任何单一模型更有效。例如,海拔、坡度、长度、流量、径流量、农田和高山、亚高山草甸在驱动观察到的特有鱼类群落结构方面发挥了重要作用,而农田、坡度草地、流量、径流量、海拔和流域面积则解释了观察到的特有物种丰富度模式。因此,人类活动对自然水生生态系统的各种影响,特别是河流流量的改变和土地利用的变化,可能对区域尺度上特有鱼类的分布模式产生相当大的影响。