Laboratory of Physical Chemistry and Colloid Science, Wageningen University, 6703 HB Wageningen, The Netherlands.
Adv Colloid Interface Sci. 2010 Sep 15;159(2):99-116. doi: 10.1016/j.cis.2010.04.004. Epub 2010 May 5.
This review is an extended version of the Overbeek lecture 2009, given at the occasion of the 23rd Conference of ECIS (European Colloid and Interface Society) in Antalya, where I received the fifth Overbeek Gold Medal awarded by ECIS. I first summarize the basics of numerical SF-SCF: the Scheutjens-Fleer version of Self-Consistent-Field theory for inhomogeneous systems, including polymer adsorption and depletion. The conformational statistics are taken from the (non-SCF) DiMarzio-Rubin lattice model for homopolymer adsorption, which enumerates the conformational details exactly by a discrete propagator for the endpoint distribution but does not account for polymer-solvent interaction and for the volume-filling constraint. SF-SCF corrects for this by adjusting the field such that it becomes self-consistent. The model can be generalized to more complex systems: polydispersity, brushes, random and block copolymers, polyelectrolytes, branching, surfactants, micelles, membranes, vesicles, wetting, etc. On a mean-field level the results are exact; the disadvantage is that only numerical data are obtained. Extensions to excluded-volume polymers are in progress. Analytical approximations for simple systems are based upon solving the Edwards diffusion equation. This equation is the continuum variant of the lattice propagator, but ignores the finite segment size (analogous to the Poisson-Boltzmann equation without a Stern layer). By using the discrete propagator for segments next to the surface as the boundary condition in the continuum model, the finite segment size can be introduced into the continuum description, like the ion size in the Stern-Poisson-Boltzmann model. In most cases a ground-state approximation is needed to find analytical solutions. In this way realistic analytical approximations for simple cases can be found, including depletion effects that occur in mixtures of colloids plus non-adsorbing polymers. In the final part of this review I discuss a generalization of the free-volume theory (FVT) for the phase behavior of colloids and non-adsorbing polymer. In FVT the polymer is considered to be ideal: the osmotic pressure Pi follows the Van 't Hoff law, the depletion thickness delta equals the radius of gyration. This restricts the validity of FVT to the so-called colloid limit (polymer much smaller than the colloids). We have been able to find simple analytical approximations for Pi and delta which account for non-ideality and include established results for the semidilute limit. So we could generalize FVT to GFVT, and can now also describe the so-called protein limit (polymer larger than the 'protein-like' colloids), where the binodal polymer concentrations scale in a simple way with the polymer/colloid size ratio. For an intermediate case (polymer size approximately colloid size) we could give a quantitative description of careful experimental data.
这篇综述是 2009 年 Overbeek 演讲的扩展版本,在安塔利亚举行的第 23 届 ECIS(欧洲胶体与界面学会)会议上发表,我在会上获得了由 ECIS 颁发的第五枚 Overbeek 金牌。我首先总结了数值 SF-SCF 的基础知识:非均匀体系的 Scheutjens-Fleer 自洽场理论,包括聚合物吸附和耗尽。构象统计数据来自于用于均聚物吸附的(非-SCF)DiMarzio-Rubin 格点模型,该模型通过端点分布的离散传播子精确地枚举构象细节,但不考虑聚合物-溶剂相互作用和体积填充约束。SF-SCF 通过调整场使其自洽来纠正这一点。该模型可以推广到更复杂的系统:多分散性、刷状聚合物、无规和嵌段共聚物、聚电解质、支化、表面活性剂、胶束、膜、囊泡、润湿等。在平均场水平上,结果是精确的;缺点是只能得到数值数据。正在进行对排斥体积聚合物的扩展。基于简单系统的解析近似基于求解 Edwards 扩散方程。该方程是格点传播子的连续变体,但忽略了有限的片段尺寸(类似于没有 Stern 层的 Poisson-Boltzmann 方程)。通过在连续模型中使用靠近表面的片段的离散传播子作为边界条件,可以将有限的片段尺寸引入连续描述中,就像 Stern-Poisson-Boltzmann 模型中的离子尺寸一样。在大多数情况下,需要找到基态近似来找到解析解。通过这种方式,可以找到简单情况的实际解析近似,包括胶体和非吸附聚合物混合物中出现的耗尽效应。在本综述的最后一部分,我讨论了胶体和非吸附聚合物相行为的自由体积理论(FVT)的推广。在 FVT 中,聚合物被认为是理想的:渗透压 Pi 遵循范特霍夫定律,耗尽厚度 delta 等于回转半径。这将 FVT 的有效性限制在所谓的胶体极限(聚合物远小于胶体)。我们已经能够找到简单的解析近似来描述 Pi 和 delta,这些解析近似考虑了非理想性,并包括了半浓极限的已有结果。因此,我们可以将 FVT 推广到 GFVT,并且现在还可以描述所谓的蛋白质极限(聚合物大于“蛋白样”胶体),其中聚合物的二项分布浓度与聚合物/胶体尺寸比以简单的方式缩放。对于中间情况(聚合物尺寸大致等于胶体尺寸),我们可以对仔细的实验数据进行定量描述。