Suppr超能文献

一种基于自回归模型的粒子滤波算法,可从脉搏血氧仪中提取高达每分钟 90 次的呼吸频率。

An autoregressive model-based particle filtering algorithms for extraction of respiratory rates as high as 90 breaths per minute from pulse oximeter.

机构信息

Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA.

出版信息

IEEE Trans Biomed Eng. 2010 Sep;57(9):2158-67. doi: 10.1109/TBME.2010.2051330. Epub 2010 Jun 10.

Abstract

We present particle filtering (PF) algorithms for an accurate respiratory rate extraction from pulse oximeter recordings over a broad range: 12-90 breaths/min. These methods are based on an autoregressive (AR) model, where the aim is to find the pole angle with the highest magnitude as it corresponds to the respiratory rate. However, when SNR is low, the pole angle with the highest magnitude may not always lead to accurate estimation of the respiratory rate. To circumvent this limitation, we propose a probabilistic approach, using a sequential Monte Carlo method, named PF, which is combined with the optimal parameter search (OPS) criterion for an accurate AR model-based respiratory rate extraction. The PF technique has been widely adopted in many tracking applications, especially for nonlinear and/or non-Gaussian problems. We examine the performances of five different likelihood functions of the PF algorithm: the strongest neighbor, nearest neighbor (NN), weighted nearest neighbor (WNN), probability data association (PDA), and weighted probability data association (WPDA). The performance of these five combined OPS-PF algorithms was measured against a solely OPS-based AR algorithm for respiratory rate extraction from pulse oximeter recordings. The pulse oximeter data were collected from 33 healthy subjects with breathing rates ranging from 12 to 90 breaths/ min. It was found that significant improvement in accuracy can be achieved by employing particle filters, and that the combined OPS-PF employing either the NN or WNN likelihood function achieved the best results for all respiratory rates considered in this paper. The main advantage of the combined OPS-PF with either the NN or WNN likelihood function is that for the first time, respiratory rates as high as 90 breaths/min can be accurately extracted from pulse oximeter recordings.

摘要

我们提出了粒子滤波(PF)算法,可在较宽的范围内(12-90 次/分钟)从脉搏血氧仪记录中准确提取呼吸频率。这些方法基于自回归(AR)模型,其目的是找到具有最高幅度的极点角度,因为它对应于呼吸频率。然而,当 SNR 较低时,具有最高幅度的极点角度并不总是导致呼吸频率的准确估计。为了规避此限制,我们提出了一种概率方法,使用顺序蒙特卡罗方法(称为 PF),该方法与最佳参数搜索(OPS)准则相结合,用于基于 AR 模型的准确呼吸频率提取。PF 技术已广泛应用于许多跟踪应用中,特别是对于非线性和/或非高斯问题。我们检查了 PF 算法的五种不同似然函数的性能:最强邻居、最近邻居(NN)、加权最近邻居(WNN)、概率数据关联(PDA)和加权概率数据关联(WPDA)。将这五种组合的 OPS-PF 算法的性能与仅基于 OPS 的 AR 算法进行了比较,以从脉搏血氧仪记录中提取呼吸频率。脉搏血氧仪数据是从 33 位呼吸频率在 12 到 90 次/分钟之间的健康受试者中收集的。结果表明,通过采用粒子滤波器可以显著提高准确性,并且对于本文考虑的所有呼吸率,采用 NN 或 WNN 似然函数的组合 OPS-PF 可以获得最佳结果。采用 NN 或 WNN 似然函数的组合 OPS-PF 的主要优势在于,它首次能够从脉搏血氧仪记录中准确提取高达 90 次/分钟的呼吸频率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验