Suppr超能文献

从光电容积脉搏波信号中通过时频谱内固有模式的递归贝叶斯跟踪获取呼吸率。

Acquiring Respiration Rate from Photoplethysmographic Signal by Recursive Bayesian Tracking of Intrinsic Modes in Time-Frequency Spectra.

机构信息

BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, 33720 Tampere, Finland.

出版信息

Sensors (Basel). 2018 May 24;18(6):1693. doi: 10.3390/s18061693.

Abstract

Respiration rate (RR) provides useful information for assessing the status of a patient. We propose RR estimation based on photoplethysmography (PPG) because the blood perfusion dynamics are known to carry information on breathing, as respiration-induced modulations in the PPG signal. We studied the use of amplitude variability of transmittance mode finger PPG signal in RR estimation by comparing four time-frequency (TF) representation methods of the signal cascaded with a particle filter. The TF methods compared were short-time Fourier transform (STFT) and three types of synchrosqueezing methods. The public VORTAL database was used in this study. The results indicate that the advanced frequency reallocation methods based on synchrosqueezing approach may present improvement over linear methods, such as STFT. The best results were achieved using wavelet synchrosqueezing transform, having a mean absolute error and median error of 2.33 and 1.15 breaths per minute, respectively. Synchrosqueezing methods were generally more accurate than STFT on most of the subjects when particle filtering was applied. While TF analysis combined with particle filtering is a promising alternative for real-time estimation of RR, artefacts and non-respiration-related frequency components remain problematic and impose requirements for further studies in the areas of signal processing algorithms an PPG instrumentation.

摘要

呼吸频率 (RR) 为评估患者状况提供了有用的信息。我们提出基于光体积描记法 (PPG) 的 RR 估计,因为众所周知,PPG 信号中的血液灌注动力学携带有呼吸信息,如呼吸引起的 PPG 信号调制。我们通过比较信号与粒子滤波器级联的四种时频 (TF) 表示方法,研究了传输模式指 PPG 信号的幅度可变性在 RR 估计中的应用。比较的 TF 方法是短时傅里叶变换 (STFT) 和三种类型的同步挤压方法。本研究使用了公共的 VORTAL 数据库。结果表明,基于同步挤压方法的先进频率再分配方法可能优于线性方法,如 STFT。使用小波同步挤压变换获得了最佳结果,平均绝对误差和中位数误差分别为 2.33 和 1.15 次/分钟。在应用粒子滤波时,对于大多数受试者,同步挤压方法通常比 STFT 更准确。虽然 TF 分析结合粒子滤波是实时估计 RR 的一种很有前途的替代方法,但伪影和与呼吸无关的频率成分仍然是问题所在,并对信号处理算法和 PPG 仪器领域的进一步研究提出了要求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2652/6022083/f35f501ce154/sensors-18-01693-g001.jpg

相似文献

2
Estimating instantaneous respiratory rate from the photoplethysmogram.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:6150-3. doi: 10.1109/EMBC.2015.7319796.
4
Validation of Instantaneous Respiratory Rate Using Reflectance PPG from Different Body Positions.
Sensors (Basel). 2018 Oct 31;18(11):3705. doi: 10.3390/s18113705.
5
Optimizing Estimates of Instantaneous Heart Rate from Pulse Wave Signals with the Synchrosqueezing Transform.
Methods Inf Med. 2016 Oct 17;55(5):463-472. doi: 10.3414/ME16-01-0026. Epub 2016 Sep 14.
6
An EEMD-PCA approach to extract heart rate, respiratory rate and respiratory activity from PPG signal.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:3817-3820. doi: 10.1109/EMBC.2016.7591560.
7
Derivation of respiration rate from ambulatory ECG and PPG using Ensemble Empirical Mode Decomposition: Comparison and fusion.
Comput Biol Med. 2017 Feb 1;81:45-54. doi: 10.1016/j.compbiomed.2016.12.005. Epub 2016 Dec 7.
10

引用本文的文献

2
Machine Learning-Based Respiration Rate and Blood Oxygen Saturation Estimation Using Photoplethysmogram Signals.
Bioengineering (Basel). 2023 Jan 28;10(2):167. doi: 10.3390/bioengineering10020167.
3
Pseudo-Bayesian Approach for Robust Mode Detection and Extraction Based on the STFT.
Sensors (Basel). 2022 Dec 22;23(1):85. doi: 10.3390/s23010085.
4
Lightweight End-to-End Deep Learning Solution for Estimating the Respiration Rate from Photoplethysmogram Signal.
Bioengineering (Basel). 2022 Oct 16;9(10):558. doi: 10.3390/bioengineering9100558.
5
Multitask Siamese Network for Remote Photoplethysmography and Respiration Estimation.
Sensors (Basel). 2022 Jul 7;22(14):5101. doi: 10.3390/s22145101.
6
PPGTempStitch: A MATLAB Toolbox for Augmenting Annotated Photoplethsmogram Signals.
Sensors (Basel). 2021 Jun 10;21(12):4007. doi: 10.3390/s21124007.
7
Photoplethysmography based atrial fibrillation detection: a review.
NPJ Digit Med. 2020 Jan 10;3:3. doi: 10.1038/s41746-019-0207-9. eCollection 2020.

本文引用的文献

1
Breathing Rate Estimation From the Electrocardiogram and Photoplethysmogram: A Review.
IEEE Rev Biomed Eng. 2018;11:2-20. doi: 10.1109/RBME.2017.2763681. Epub 2017 Oct 24.
3
An assessment of algorithms to estimate respiratory rate from the electrocardiogram and photoplethysmogram.
Physiol Meas. 2016 Apr;37(4):610-26. doi: 10.1088/0967-3334/37/4/610. Epub 2016 Mar 30.
4
Estimating instantaneous respiratory rate from the photoplethysmogram.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:6150-3. doi: 10.1109/EMBC.2015.7319796.
7
Estimation of respiratory rate from photoplethysmogram data using time-frequency spectral estimation.
IEEE Trans Biomed Eng. 2009 Aug;56(8):2054-63. doi: 10.1109/TBME.2009.2019766. Epub 2009 Apr 14.
8
Photoplethysmography and its application in clinical physiological measurement.
Physiol Meas. 2007 Mar;28(3):R1-39. doi: 10.1088/0967-3334/28/3/R01. Epub 2007 Feb 20.
9
The enigma of Mayer waves: Facts and models.
Cardiovasc Res. 2006 Apr 1;70(1):12-21. doi: 10.1016/j.cardiores.2005.11.008. Epub 2005 Dec 19.
10
Monitoring of respiratory and heart rates using a fibre-optic sensor.
Med Biol Eng Comput. 1992 Sep;30(5):533-7. doi: 10.1007/BF02457833.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验