Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
J Exp Biol. 2010 Jul 1;213(Pt 13):2209-18. doi: 10.1242/jeb.040170.
Recent studies of marine invertebrates and fish have suggested that lower and upper critical temperatures (CT(min) and CT(max)) are coupled by a common mechanism: oxygen and capacity limitation of thermal tolerance (OCLT). Using thermolimit respirometry, we tested the predictions of this theory for terrestrial arthropods by measuring maxima and minima for both critical temperatures and metabolic rate in two arthropods, the isopod Porcellio scaber and the beetle Tenebrio molitor, at 40%, 21%, 10% and 2.5% ambient O(2). Critical temperatures were identified as particular points on both activity and traces in four ways. In the first two instances, we identified the inflection points in regressions of absolute difference sum (ADS) residuals calculated for activity (aADS) and (VI), respectively. In the third, we visually identified the lowest point before the post-mortal peak in CO(2) release (PMV). Finally, we pinpointed the sudden drop in at death, where fell outside the 95% confidence intervals of the 5 min period immediately preceding the drop-off (CI). Minimum and maximum metabolic rates were determined using CO(2) traces, and the temperatures corresponding to these identified as T(MetMin) and T(MetMax). For both species, ambient oxygen concentration did not influence CT(min), minimum metabolic rate, or T(MetMin). By contrast, severe hypoxia (2.5% O(2)) caused a 6.9 degrees C decline in activity-based CT(max) for T. molitor and a 10.6 degrees C decline for P. scaber, relative to normoxia (21% O(2)). The magnitude of this decrease differed between methods used to estimated critical thermal limits, highlighting the need for a standard method to determine these endpoints during thermolimit respirometry. Maximum metabolic rate also declined with decreasing ambient oxygen in both species. The combination of increasing metabolic rate and oxygen limitation affected upper thermal limits in these arthropods only in severe hypoxia (2.5% O(2)). In both species, CT(min) and CT(max) responded differently to oxygen limitation, suggesting that this is not a common mechanism coupling upper and lower limits in terrestrial arthropods.
最近对海洋无脊椎动物和鱼类的研究表明,下限和上限临界温度 (CT(min) 和 CT(max)) 是通过一个共同的机制耦合的:氧气和热耐力的容量限制 (OCLT)。使用热限呼吸测量法,我们通过测量两种节肢动物——等足类 Porcellio scaber 和甲虫 Tenebrio molitor 的临界温度和代谢率的最大值和最小值,在 40%、21%、10%和 2.5%的环境氧气 (O2) 下,测试了该理论对陆地节肢动物的预测。临界温度通过以下四种方法中的两种在活动和轨迹上被确定为特定点。在前两种情况下,我们分别通过回归绝对差和 (ADS) 残差来确定活动和轨迹 (VI) 的拐点。在第三种情况下,我们通过视觉识别 CO2 释放 (PMV) 前死亡峰之前的最低点。最后,我们确定了死亡时的突然下降,该点落在下降前 5 分钟的 95%置信区间 (CI) 之外。最低和最高代谢率使用 CO2 轨迹确定,与这些轨迹对应的温度分别确定为 T(MetMin)和 T(MetMax)。对于这两个物种,环境氧气浓度不影响 CT(min)、最低代谢率或 T(MetMin)。相比之下,严重缺氧 (2.5% O2) 导致 T. molitor 的基于活动的 CT(max)下降 6.9°C,P. scaber 下降 10.6°C,与常氧 (21% O2) 相比。使用不同方法估计临界热极限时,这种下降幅度不同,这突出了在热限呼吸测量中需要一种标准方法来确定这些终点。在这两个物种中,最大代谢率也随着环境氧气的减少而下降。在这两个物种中,代谢率的增加和氧气限制共同影响了上热极限,只有在严重缺氧 (2.5% O2) 时才会出现这种情况。在这两个物种中,CT(min) 和 CT(max) 对氧气限制的反应不同,这表明这不是耦合陆地节肢动物上下限的共同机制。