School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.
Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK.
Philos Trans R Soc Lond B Biol Sci. 2020 Jan 20;375(1790):20190178. doi: 10.1098/rstb.2019.0178. Epub 2019 Dec 2.
Evolutionary theory proposes that maternal inheritance of mitochondria will facilitate the accumulation of mitochondrial DNA (mtDNA) mutations that are harmful to males but benign or beneficial to females. Furthermore, mtDNA haplotypes sampled from across a given species distribution are expected to differ in the number and identity of these 'male-harming' mutations they accumulate. Consequently, it is predicted that the genetic variation which delineates distinct mtDNA haplotypes of a given species should confer larger phenotypic effects on males than females (reflecting mtDNA mutations that are male-harming, but female-benign), or sexually antagonistic effects (reflecting mutations that are male-harming, but female-benefitting). These predictions have received support from recent work examining mitochondrial haplotypic effects on adult life-history traits in . Here, we explore whether similar signatures of male-bias or sexual antagonism extend to a key physiological trait-metabolic rate. We measured the effects of mitochondrial haplotypes on the amount of carbon dioxide produced by individual flies, controlling for mass and activity, across 13 strains of that differed only in their mtDNA haplotype. The effects of mtDNA haplotype on metabolic rate were larger in males than females. Furthermore, we observed a negative intersexual correlation across the haplotypes for metabolic rate. Finally, we uncovered a male-specific negative correlation, across haplotypes, between metabolic rate and longevity. These results are consistent with the hypothesis that maternal mitochondrial inheritance has led to the accumulation of a sex-specific genetic load within the mitochondrial genome, which affects metabolic rate and that may have consequences for the evolution of sex differences in life history. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
进化理论提出,线粒体的母系遗传将有助于积累对雄性有害但对雌性无害或有益的线粒体 DNA(mtDNA)突变。此外,从给定物种分布中采样的 mtDNA 单倍型预计在它们积累的这些“雄性有害”突变的数量和身份上有所不同。因此,预计区分给定物种的不同 mtDNA 单倍型的遗传变异将对雄性而不是雌性产生更大的表型效应(反映对雄性有害但对雌性有益的 mtDNA 突变),或性拮抗效应(反映对雄性有害但对雌性有益的突变)。这些预测得到了最近研究的支持,该研究检查了线粒体单倍型对 的成年生活史特征的影响。在这里,我们探讨了类似的雄性偏向或性拮抗的特征是否扩展到关键的生理特征——代谢率。我们测量了线粒体单倍型对个体果蝇产生的二氧化碳量的影响,控制了质量和活动,跨越了 13 个仅在 mtDNA 单倍型上不同的 菌株。mtDNA 单倍型对代谢率的影响在雄性中大于雌性。此外,我们观察到代谢率在单倍型之间存在负的两性相关。最后,我们发现了一个横跨单倍型的雄性特异性负相关,即代谢率与寿命之间的负相关。这些结果与以下假设一致,即母系线粒体遗传导致了线粒体基因组中特定于性别的遗传负荷的积累,这影响了代谢率,并可能对生活史中性别差异的进化产生影响。本文是主题问题“将线粒体基因型与表型联系起来:一项复杂的努力”的一部分。