Akinyokun Charles O, Obot Okure U, Uzoka Faith-Michael E, Andy John J
Dept. of Computer Science, Federal University of Technology, Akure, Nigeria.
Stud Health Technol Inform. 2010;156:231-44.
A neuro-fuzzy decision support system is proposed for the diagnosis of heart failure. The system comprises; knowledge base (database, neural networks and fuzzy logic) of both the quantitative and qualitative knowledge of the diagnosis of heart failure, neuro-fuzzy inference engine and decision support engine. The neural networks employ a multi-layers perception back propagation learning process while the fuzzy logic uses the root sum square inference procedure. The neuro-fuzzy inference engine uses a weighted average of the premise and consequent parameters with the fuzzy rules serving as the nodes and the fuzzy sets representing the weights of the nodes. The decision support engine carries out the cognitive and emotional filtering of the objective and subjective feelings of the medical practitioner. An experimental study of the decision support system was carried out using cases of some patients from three hospitals in Nigeria with the assistance of their medical personnel who collected patients' data over a period of six months. The results of the study show that the neuro-fuzzy system provides a highly reliable diagnosis, while the emotional and cognitive filters further refine the diagnosis results by taking care of the contextual elements of medical diagnosis.
提出了一种用于心力衰竭诊断的神经模糊决策支持系统。该系统包括:心力衰竭诊断的定量和定性知识的知识库(数据库、神经网络和模糊逻辑)、神经模糊推理引擎和决策支持引擎。神经网络采用多层感知器反向传播学习过程,而模糊逻辑使用均方根推理程序。神经模糊推理引擎使用前提和结果参数的加权平均值,其中模糊规则作为节点,模糊集表示节点的权重。决策支持引擎对医生的客观和主观感受进行认知和情感过滤。在尼日利亚三家医院的一些患者病例上进行了决策支持系统的实验研究,并在其医务人员的协助下,他们在六个月的时间里收集了患者的数据。研究结果表明,神经模糊系统提供了高度可靠的诊断,而情感和认知过滤器通过考虑医学诊断的上下文因素进一步完善了诊断结果。