Suppr超能文献

一种基于分层模糊规则的失语症诊断方法。

A hierarchical fuzzy rule-based approach to aphasia diagnosis.

作者信息

Akbarzadeh-T Mohammad-R, Moshtagh-Khorasani Majid

机构信息

Department of Biomedical Engineering, Islamic Azad University of Mashhad, Mashhad, Iran.

出版信息

J Biomed Inform. 2007 Oct;40(5):465-75. doi: 10.1016/j.jbi.2006.12.005. Epub 2006 Dec 24.

Abstract

Aphasia diagnosis is a particularly challenging medical diagnostic task due to the linguistic uncertainty and vagueness, inconsistencies in the definition of aphasic syndromes, large number of measurements with imprecision, natural diversity and subjectivity in test objects as well as in opinions of experts who diagnose the disease. To efficiently address this diagnostic process, a hierarchical fuzzy rule-based structure is proposed here that considers the effect of different features of aphasia by statistical analysis in its construction. This approach can be efficient for diagnosis of aphasia and possibly other medical diagnostic applications due to its fuzzy and hierarchical reasoning construction. Initially, the symptoms of the disease which each consists of different features are analyzed statistically. The measured statistical parameters from the training set are then used to define membership functions and the fuzzy rules. The resulting two-layered fuzzy rule-based system is then compared with a back propagating feed-forward neural network for diagnosis of four Aphasia types: Anomic, Broca, Global and Wernicke. In order to reduce the number of required inputs, the technique is applied and compared on both comprehensive and spontaneous speech tests. Statistical t-test analysis confirms that the proposed approach uses fewer Aphasia features while also presenting a significant improvement in terms of accuracy.

摘要

失语症诊断是一项特别具有挑战性的医学诊断任务,这是由于语言的不确定性和模糊性、失语症综合征定义的不一致性、大量不精确的测量、测试对象的自然多样性和主观性以及诊断该疾病的专家意见的主观性。为了有效地处理这一诊断过程,本文提出了一种基于层次模糊规则的结构,该结构在构建过程中通过统计分析来考虑失语症不同特征的影响。由于其模糊和层次推理结构,这种方法对于失语症的诊断以及可能的其他医学诊断应用可能是有效的。首先,对每种由不同特征组成的疾病症状进行统计分析。然后,将从训练集中测得的统计参数用于定义隶属函数和模糊规则。然后,将所得的基于两层模糊规则的系统与反向传播前馈神经网络进行比较,以诊断四种失语症类型:命名性失语、布罗卡失语、完全性失语和韦尼克失语。为了减少所需输入的数量,该技术在综合语音测试和自发语音测试中均得到应用并进行比较。统计t检验分析证实,所提出的方法使用较少的失语症特征,同时在准确性方面也有显著提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验