Suppr超能文献

使用基于稳定同位素标记氨基酸的细胞培养技术(SILAC)的蛋白质组学方法鉴定miR-143的靶标。

Identifying targets of miR-143 using a SILAC-based proteomic approach.

作者信息

Yang Yi, Chaerkady Raghothama, Kandasamy Kumaran, Huang Tai-Chung, Selvan Lakshmi Dhevi N, Dwivedi Sutopa B, Kent Oliver A, Mendell Joshua T, Pandey Akhilesh

机构信息

McKusick-Nathans Institute of Genetic Medicine, Baltimore, Maryland 21205, USA.

出版信息

Mol Biosyst. 2010 Oct;6(10):1873-82. doi: 10.1039/c004401f. Epub 2010 Jun 14.

Abstract

Although the targets of most miRNAs have not been experimentally identified, microRNAs (miRNAs) have begun to be extensively characterized in physiological, developmental and disease-related contexts in recent years. Thus far, mainly computational approaches have been employed to predict potential targets for the large majority of miRNAs. Although miRNAs exert a major influence on the efficiency of translation of their targets in animals, most studies describing experimental identification of miRNA target genes are based on detection of altered mRNA levels. miR-143 is a miRNA involved in tumorigenesis in multiple types of cancer, smooth muscle cell fate and adipocyte differentiation. Only a few miR-143 targets are experimentally verified, so we employed a SILAC-based quantitative proteomic strategy to systematically identify potential targets of miR-143. In total, we identified >1200 proteins from MiaPaCa2 pancreatic cancer cells, of which 93 proteins were downregulated >2-fold in miR-143 mimic transfected cells as compared to controls. Validation of 34 of these candidate targets in luciferase assays showed that 10 of them were likely direct targets of miR-143. Importantly, we also carried out gene expression profiling of the same cells and observed that the majority of the candidate targets identified by proteomics did not show a concomitant decrease in mRNA levels confirming that miRNAs affect the expression of most targets through translational inhibition. Our study clearly demonstrates that quantitative proteomic approaches are important and necessary for identifying miRNA targets.

摘要

尽管大多数微小RNA(miRNA)的靶标尚未通过实验确定,但近年来,微小RNA已开始在生理、发育和疾病相关背景下得到广泛表征。到目前为止,对于绝大多数微小RNA,主要采用计算方法来预测其潜在靶标。尽管微小RNA对动物体内其靶标的翻译效率有重大影响,但大多数描述微小RNA靶标基因实验鉴定的研究都是基于检测mRNA水平的变化。miR-143是一种参与多种癌症肿瘤发生、平滑肌细胞命运和脂肪细胞分化的微小RNA。只有少数miR-143靶标得到了实验验证,因此我们采用基于稳定同位素标记氨基酸的细胞培养定量蛋白质组学策略来系统鉴定miR-143的潜在靶标。我们总共从MiaPaCa2胰腺癌细胞中鉴定出>1200种蛋白质,其中93种蛋白质在转染miR-143模拟物的细胞中与对照相比下调了>2倍。在荧光素酶测定中对其中34个候选靶标进行验证表明,其中10个可能是miR-143的直接靶标。重要的是,我们还对相同细胞进行了基因表达谱分析,观察到蛋白质组学鉴定出的大多数候选靶标在mRNA水平上并未出现相应下降,这证实了微小RNA通过翻译抑制影响大多数靶标的表达。我们的研究清楚地表明,定量蛋白质组学方法对于鉴定微小RNA靶标非常重要且必要。

相似文献

1
Identifying targets of miR-143 using a SILAC-based proteomic approach.
Mol Biosyst. 2010 Oct;6(10):1873-82. doi: 10.1039/c004401f. Epub 2010 Jun 14.
2
3
Novel direct targets of miR-19a identified in breast cancer cells by a quantitative proteomic approach.
PLoS One. 2012;7(8):e44095. doi: 10.1371/journal.pone.0044095. Epub 2012 Aug 30.
4
Identification of miR-145 targets through an integrated omics analysis.
Mol Biosyst. 2015 Jan;11(1):197-207. doi: 10.1039/c4mb00585f. Epub 2014 Oct 30.
5
Global identification of miR-373-regulated genes in breast cancer by quantitative proteomics.
Proteomics. 2011 Mar;11(5):912-20. doi: 10.1002/pmic.201000539. Epub 2011 Jan 27.
6
Identification of direct targets for the miR-17-92 cluster by proteomic analysis.
Proteomics. 2011 Sep;11(17):3531-9. doi: 10.1002/pmic.201000501. Epub 2011 Aug 1.
7
Identification of novel targets for miR-29a using miRNA proteomics.
PLoS One. 2012;7(8):e43243. doi: 10.1371/journal.pone.0043243. Epub 2012 Aug 27.
8
Quantitative proteomic strategies for the identification of microRNA targets.
Expert Rev Proteomics. 2012 Oct;9(5):549-59. doi: 10.1586/epr.12.49.
10
Target identification of microRNAs expressed highly in human embryonic stem cells.
J Cell Biochem. 2009 Apr 15;106(6):1020-30. doi: 10.1002/jcb.22084.

引用本文的文献

1
Research and progress of microRNA-136 in metastatic tumors.
Front Oncol. 2025 Mar 4;15:1555270. doi: 10.3389/fonc.2025.1555270. eCollection 2025.
2
Harnessing the power of miRNAs for precision diagnosis and treatment of male infertility.
Naunyn Schmiedebergs Arch Pharmacol. 2025 Apr;398(4):3271-3296. doi: 10.1007/s00210-024-03594-7. Epub 2024 Nov 13.
3
Machine Learning Based Methods and Best Practices of microRNA-Target Prediction and Validation.
Adv Exp Med Biol. 2022;1385:109-131. doi: 10.1007/978-3-031-08356-3_4.
4
MicroRNA Targeting.
Methods Mol Biol. 2022;2257:105-130. doi: 10.1007/978-1-0716-1170-8_6.
5
Evaluation and control of miRNA-like off-target repression for RNA interference.
Cell Mol Life Sci. 2018 Mar;75(5):797-814. doi: 10.1007/s00018-017-2656-0. Epub 2017 Sep 13.
6
miR-375 Regulates Invasion-Related Proteins Vimentin and L-Plastin.
Am J Pathol. 2017 Jul;187(7):1523-1536. doi: 10.1016/j.ajpath.2017.02.019. Epub 2017 May 10.
7
Differential Sensitivity of Target Genes to Translational Repression by miR-17~92.
PLoS Genet. 2017 Feb 27;13(2):e1006623. doi: 10.1371/journal.pgen.1006623. eCollection 2017 Feb.
8
Tiny giants of gene regulation: experimental strategies for microRNA functional studies.
Wiley Interdiscip Rev Dev Biol. 2016 May-Jun;5(3):311-62. doi: 10.1002/wdev.223. Epub 2016 Mar 7.
9
Regulation signature of miR-143 and miR-26 in porcine Salmonella infection identified by binding site enrichment analysis.
Mol Genet Genomics. 2016 Apr;291(2):789-99. doi: 10.1007/s00438-015-1146-z. Epub 2015 Nov 20.
10
Cooperative target mRNA destabilization and translation inhibition by miR-58 microRNA family in C. elegans.
Genome Res. 2015 Nov;25(11):1680-91. doi: 10.1101/gr.183160.114. Epub 2015 Jul 31.

本文引用的文献

1
Interaction between the Msh2 and Msh6 nucleotide-binding sites in the Saccharomyces cerevisiae Msh2-Msh6 complex.
J Biol Chem. 2010 Mar 19;285(12):9301-10. doi: 10.1074/jbc.M109.096388. Epub 2010 Jan 20.
2
A resource for analysis of microRNA expression and function in pancreatic ductal adenocarcinoma cells.
Cancer Biol Ther. 2009 Nov;8(21):2013-24. doi: 10.4161/cbt.8.21.9685.
3
4
A high-resolution structure of the pre-microRNA nuclear export machinery.
Science. 2009 Nov 27;326(5957):1275-9. doi: 10.1126/science.1178705.
5
GenBank.
Nucleic Acids Res. 2010 Jan;38(Database issue):D46-51. doi: 10.1093/nar/gkp1024. Epub 2009 Nov 12.
6
MicroRNA-143 reduces viability and increases sensitivity to 5-fluorouracil in HCT116 human colorectal cancer cells.
FEBS J. 2009 Nov;276(22):6689-700. doi: 10.1111/j.1742-4658.2009.07383.x. Epub 2009 Oct 16.
8
MK2 regulates the early stages of skin tumor promotion.
Carcinogenesis. 2009 Dec;30(12):2100-8. doi: 10.1093/carcin/bgp238.
10
MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury.
Genes Dev. 2009 Sep 15;23(18):2166-78. doi: 10.1101/gad.1842409. Epub 2009 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验