Suppr超能文献

miRNA 样非靶位抑制的评估与控制用于 RNA 干扰。

Evaluation and control of miRNA-like off-target repression for RNA interference.

机构信息

Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea.

EncodeGEN Co. Ltd, Seoul, 06329, Korea.

出版信息

Cell Mol Life Sci. 2018 Mar;75(5):797-814. doi: 10.1007/s00018-017-2656-0. Epub 2017 Sep 13.

Abstract

RNA interference (RNAi) has been widely adopted to repress specific gene expression and is easily achieved by designing small interfering RNAs (siRNAs) with perfect sequence complementarity to the intended target mRNAs. Although siRNAs direct Argonaute (Ago), a core component of the RNA-induced silencing complex (RISC), to recognize and silence target mRNAs, they also inevitably function as microRNAs (miRNAs) and suppress hundreds of off-targets. Such miRNA-like off-target repression is potentially detrimental, resulting in unwanted toxicity and phenotypes. Despite early recognition of the severity of miRNA-like off-target repression, this effect has often been overlooked because of difficulties in recognizing and avoiding off-targets. However, recent advances in genome-wide methods and knowledge of Ago-miRNA target interactions have set the stage for properly evaluating and controlling miRNA-like off-target repression. Here, we describe the intrinsic problems of miRNA-like off-target effects caused by canonical and noncanonical interactions. We particularly focus on various genome-wide approaches and chemical modifications for the evaluation and prevention of off-target repression to facilitate the use of RNAi with secured specificity.

摘要

RNA 干扰 (RNAi) 已被广泛用于抑制特定基因的表达,通过设计与目标 mRNA 完全互补的小干扰 RNA (siRNA) 即可轻松实现。尽管 siRNA 可指导 Argonaute (Ago),即 RNA 诱导沉默复合物 (RISC) 的核心成分,识别并沉默靶 mRNA,但它们也不可避免地充当 microRNA (miRNA) 并抑制数百个非靶标。这种类似 miRNA 的非靶标抑制可能有害,导致不必要的毒性和表型。尽管人们很早就认识到类似 miRNA 的非靶标抑制的严重性,但由于难以识别和避免非靶标,这种效应经常被忽视。然而,基因组范围方法的最新进展以及对 Ago-miRNA 靶标相互作用的了解,为正确评估和控制类似 miRNA 的非靶标抑制奠定了基础。在这里,我们描述了由规范和非规范相互作用引起的类似 miRNA 的非靶标效应的内在问题。我们特别关注各种基因组范围的方法和化学修饰,以评估和预防非靶标抑制,从而促进安全特异性的 RNAi 的使用。

相似文献

1
Evaluation and control of miRNA-like off-target repression for RNA interference.
Cell Mol Life Sci. 2018 Mar;75(5):797-814. doi: 10.1007/s00018-017-2656-0. Epub 2017 Sep 13.
2
Rationally designed siRNAs without miRNA-like off-target repression.
BMB Rep. 2016 Mar;49(3):135-6. doi: 10.5483/bmbrep.2016.49.3.019.
4
Abasic pivot substitution harnesses target specificity of RNA interference.
Nat Commun. 2015 Dec 18;6:10154. doi: 10.1038/ncomms10154.
5
Human Argonaute 2 Has Diverse Reaction Pathways on Target RNAs.
Mol Cell. 2015 Jul 2;59(1):117-24. doi: 10.1016/j.molcel.2015.04.027.
6
Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54.
PLoS Biol. 2006 Jul;4(7):e210. doi: 10.1371/journal.pbio.0040210.
7
Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties.
Cell. 2012 Nov 21;151(5):1055-67. doi: 10.1016/j.cell.2012.10.036.
8
MicroRNA Target Recognition: Insights from Transcriptome-Wide Non-Canonical Interactions.
Mol Cells. 2016 May 31;39(5):375-81. doi: 10.14348/molcells.2016.0013. Epub 2016 Apr 27.
9
10
The Role of Tertiary Structure in MicroRNA Target Recognition.
Methods Mol Biol. 2019;1970:43-64. doi: 10.1007/978-1-4939-9207-2_4.

引用本文的文献

4
The Strategy and Application of Gene Attenuation in Metabolic Engineering.
Microorganisms. 2025 Apr 17;13(4):927. doi: 10.3390/microorganisms13040927.
6
Preclinical evaluation of AGT mRNA replacement therapy for primary hyperoxaluria type I disease.
Sci Adv. 2025 Apr 11;11(15):eadt9694. doi: 10.1126/sciadv.adt9694. Epub 2025 Apr 9.
8
Advances and prospects of RNA delivery nanoplatforms for cancer therapy.
Acta Pharm Sin B. 2025 Jan;15(1):52-96. doi: 10.1016/j.apsb.2024.09.009. Epub 2024 Sep 14.
9
The Application of MicroRNAs in Traumatic Brain Injury: Mechanism Elucidation and Clinical Translation.
Mol Neurobiol. 2025 Jun;62(6):7846-7863. doi: 10.1007/s12035-025-04737-4. Epub 2025 Feb 13.
10
Recent Advances and Prospects in RNA Drug Development.
Int J Mol Sci. 2024 Nov 15;25(22):12284. doi: 10.3390/ijms252212284.

本文引用的文献

1
RIsearch2: suffix array-based large-scale prediction of RNA-RNA interactions and siRNA off-targets.
Nucleic Acids Res. 2017 May 5;45(8):e60. doi: 10.1093/nar/gkw1325.
2
Alnylam terminates revusiran program, stock plunges.
Nat Biotechnol. 2016 Dec 7;34(12):1213-1214. doi: 10.1038/nbt1216-1213.
3
Discriminating self from non-self in nucleic acid sensing.
Nat Rev Immunol. 2016 Sep;16(9):566-80. doi: 10.1038/nri.2016.78. Epub 2016 Jul 25.
4
Structure-Guided Control of siRNA Off-Target Effects.
J Am Chem Soc. 2016 Jul 20;138(28):8667-9. doi: 10.1021/jacs.6b06137. Epub 2016 Jul 12.
5
Structural Analysis of Human Argonaute-2 Bound to a Modified siRNA Guide.
J Am Chem Soc. 2016 Jul 20;138(28):8694-7. doi: 10.1021/jacs.6b04454. Epub 2016 Jul 12.
6
MicroRNA Target Recognition: Insights from Transcriptome-Wide Non-Canonical Interactions.
Mol Cells. 2016 May 31;39(5):375-81. doi: 10.14348/molcells.2016.0013. Epub 2016 Apr 27.
7
Hsp90aa1: a novel target gene of miR-1 in cardiac ischemia/reperfusion injury.
Sci Rep. 2016 Apr 14;6:24498. doi: 10.1038/srep24498.
8
Rationally designed siRNAs without miRNA-like off-target repression.
BMB Rep. 2016 Mar;49(3):135-6. doi: 10.5483/bmbrep.2016.49.3.019.
9
Abasic pivot substitution harnesses target specificity of RNA interference.
Nat Commun. 2015 Dec 18;6:10154. doi: 10.1038/ncomms10154.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验