Department of Biochemical Science and Technology, Institute of Microbiology and Biochemistry, College of Life Science, National Taiwan University, No 1, Sec 4, Roosevelt Road, Taipei 10617, Taiwan.
Planta. 2010 Aug;232(3):649-62. doi: 10.1007/s00425-010-1204-z. Epub 2010 Jun 11.
Dynamic modification of target proteins by small ubiquitin-like modifier (SUMO) is known to modulate many important cellular processes and is required for cell viability and development in all eukaryotes. However, understanding of SUMO systems in plants, especially in unicellular green algae, remains elusive. In this study, Chlamydomonas reinhardtii CrSUMO96, CrSUMO97 and CrSUMO148 were characterized. We show that the formation of polymeric CrSUMO96 and CrSUMO97 chains can be catalyzed either by the human SAE1/SAE2 and Ubc9 SUMOylation system in vitro or by an Escherichia coli chimeric SUMOylation system in vivo. An exposed C-terminal di-glycine motif of CrSUMO96 or CrSUMO97 is essential for functional SUMOylation. The human SUMO-specific protease, SENP1, demonstrates more processing activity for CrSUMO97 than for CrSUMO96. The CrSUMO148 precursor notably has four repeated di-glycine motifs at the C-terminus. This unique feature is not found in other known SUMO proteins. Interestingly, only 83-residual CrSUMO148(1-83) with the first di-glycine motif can form SAE1/SAE2-SUMO complex and further form polymeric chains with the help of Ubc9. More surprisingly, CrSUMO148 precursor is digested by SENP1, solely at the peptide bond after the first di-glycine motif although there are four theoretically identical processing sites in the primary sequence. This process directly generates 83-residual CrSUMO148(1-83) mature protein, which is exactly the form suitable for activation and conjugation. We also show that SENP1 displays similar isopeptidase activity in the deconjugation of polymeric CrSUMO96, CrSUMO97 or CrSUMO148 chains, revealing that the catalytic mechanisms of processing and deconjugation of CrSUMOs by SENP1 may differ.
小分子泛素样修饰物(SUMO)对靶蛋白的动态修饰可调节许多重要的细胞过程,并且是所有真核生物细胞存活和发育所必需的。然而,植物中 SUMO 系统,尤其是单细胞绿藻中的 SUMO 系统,仍未被完全理解。在这项研究中,对莱茵衣藻 CrSUMO96、CrSUMO97 和 CrSUMO148 进行了表征。我们发现,聚合物 CrSUMO96 和 CrSUMO97 链的形成可以在体外由人 SAE1/SAE2 和 Ubc9 SUMO 化系统或体内的大肠杆菌嵌合 SUMO 化系统催化。暴露的 CrSUMO96 或 CrSUMO97 的 C 末端双甘氨酸基序对于功能性 SUMO 化是必需的。人 SUMO 特异性蛋白酶 SENP1 对 CrSUMO97 的加工活性比对 CrSUMO96 的更高。CrSUMO148 前体在 C 末端显著具有四个重复的双甘氨酸基序。这种独特的特征在其他已知的 SUMO 蛋白中没有发现。有趣的是,只有具有第一个双甘氨酸基序的 83 残基的 CrSUMO148(1-83)才能形成 SAE1/SAE2-SUMO 复合物,并在 Ubc9 的帮助下进一步形成聚合物链。更令人惊讶的是,CrSUMO148 前体被 SENP1 切割,仅在第一个双甘氨酸基序后的肽键处被切割,尽管在一级序列中有四个理论上相同的加工位点。这一过程直接产生 83 残基的 CrSUMO148(1-83)成熟蛋白,这正是激活和缀合所需要的形式。我们还表明,SENP1 在解聚聚合物 CrSUMO96、CrSUMO97 或 CrSUMO148 链时表现出相似的异构酶活性,这表明 SENP1 对 CrSUMO 的加工和去缀合的催化机制可能不同。