Suppr超能文献

基于支持向量机的 TIBO 衍生物定量构效关系研究。

Quantitative structure-activity relationship studies of TIBO derivatives using support vector machines.

机构信息

Departement de Chimie, Université Cadi Ayyad, Marrakech, Morocco.

出版信息

SAR QSAR Environ Res. 2010 Apr;21(3-4):231-46. doi: 10.1080/10629361003770977.

Abstract

A quantitative structure-activity relationship (QSAR) study is suggested for the prediction of anti-HIV activity of tetrahydroimidazo[4,5,1-jk][1,4]benzodiazepinone (TIBO) derivatives. The model was produced by using the support vector machine (SVM) technique to develop quantitative relationships between the anti-HIV activity and ten molecular descriptors of 89 TIBO derivatives. The performance and predictive capability of the SVM method were investigated and compared with other techniques such as artificial neural networks and multiple linear regression. The results obtained indicate that the SVM model with the kernel radial basis function can be successfully used to predict the anti-HIV activity of TIBO derivatives with only ten molecular descriptors that can be calculated directly from only molecular structure. The contribution of each descriptor to the structure-activity relationships was evaluated. Hydrophobicity of the molecule was thus found to take the most relevant part in the molecular description.

摘要

建议进行定量构效关系(QSAR)研究,以预测四氢咪唑并[4,5,1-jk][1,4]苯并二氮杂卓(TIBO)衍生物的抗 HIV 活性。该模型是通过使用支持向量机(SVM)技术来开发抗 HIV 活性与 89 个 TIBO 衍生物的十个分子描述符之间的定量关系而产生的。研究并比较了 SVM 方法与其他技术(如人工神经网络和多元线性回归)的性能和预测能力。结果表明,具有核径向基函数的 SVM 模型可成功用于预测 TIBO 衍生物的抗 HIV 活性,仅需十个可直接从分子结构计算得出的分子描述符。评估了每个描述符对结构-活性关系的贡献。结果发现,分子的疏水性在分子描述中起着最重要的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验