The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.
Biochemistry. 2010 Jul 20;49(28):5899-908. doi: 10.1021/bi902197x.
Merozoite surface protein 2 (MSP2) is a glycosylphosphatidylinositol (GPI)-anchored protein expressed abundantly on the surface of Plasmodium falciparum merozoites. The results of a phase 2 trial in Papua New Guinean children showed MSP2 to be a promising malaria vaccine candidate. MSP2 is intrinsically unstructured and forms amyloid-like fibrils under physiological conditions. Oligomers containing beta-strand interactions similar to those in amyloid fibrils may be a component of the fibrillar surface coat on P. falciparum merozoites. As the propensity of MSP2 to form fibrils in solution also has the potential to impede its development as a vaccine candidate, finding an inhibitor that specifically inhibits fibrillogenesis may enhance vaccine development. In this study, we tested the ability of three flavonoids, EGCG, baicalein, and resveratrol, to inhibit MSP2 fibrillogenesis and found marked inhibition with EGCG but not with the other two flavonoids. The inhibitory effect and the interactions of the flavonoids with MSP2 were characterized using NMR spectroscopy, thioflavin T fluorescence assays, electron microscopy, and other biophysical methods. EGCG stabilizes soluble oligomers and blocks fibrillogenesis by preventing the conformational transition of MSP2 from a random coil to an amyloidogenic beta-sheet structure. Structural comparison of the three flavonoids indicates an association between their propensity for autoxidation and their fibril inhibitory activity; the activity of EGCG can be attributed to the vicinal hydroxyl groups present in this flavonoid and their ability to form quinones. The molecular mechanism of fibril inhibition by EGCG appears to be complex and involves noncovalent binding followed by covalent modification of the protein. Although the addition of EGCG appears to be an effective means of stabilizing MSP2 in solution, the covalent modification of MSP2 would most likely not be acceptable in a vaccine formulation. However, these small molecule inhibitors of MSP2 fibril formation will be useful as mechanistic probes in studying oligomerization and fibril assembly of MSP2.
裂殖子表面蛋白 2(MSP2)是一种糖基磷脂酰肌醇(GPI)锚定蛋白,在恶性疟原虫裂殖子表面大量表达。在巴布亚新几内亚儿童中进行的 2 期试验结果表明,MSP2 是一种很有前途的疟疾疫苗候选物。MSP2 本质上是无结构的,在生理条件下形成类似淀粉样纤维的纤维。含有与淀粉样纤维中相似的β-链相互作用的低聚物可能是恶性疟原虫裂殖子纤维状表面覆盖物的一个组成部分。由于 MSP2 在溶液中形成纤维的倾向也有可能阻碍其作为疫苗候选物的开发,因此寻找一种特异性抑制纤维形成的抑制剂可能会增强疫苗的开发。在这项研究中,我们测试了三种黄酮类化合物,表没食子儿茶素没食子酸酯(EGCG)、黄芩素和白藜芦醇,抑制 MSP2 纤维形成的能力,发现 EGCG 有明显的抑制作用,而另外两种黄酮类化合物则没有。使用 NMR 光谱、硫黄素 T 荧光测定、电子显微镜和其他生物物理方法来表征黄酮类化合物的抑制作用及其与 MSP2 的相互作用。EGCG 通过阻止 MSP2 从无规卷曲到淀粉样β-折叠结构的构象转变,稳定可溶性低聚物并阻止纤维形成。三种黄酮类化合物的结构比较表明,它们的自氧化倾向与其纤维抑制活性之间存在关联;EGCG 的活性可归因于该黄酮类化合物中存在的邻羟基及其形成醌的能力。EGCG 抑制纤维形成的分子机制似乎很复杂,涉及非共价结合,然后是蛋白质的共价修饰。尽管添加 EGCG 似乎是在溶液中稳定 MSP2 的有效方法,但 MSP2 的共价修饰在疫苗配方中很可能不可接受。然而,这些 MSP2 纤维形成的小分子抑制剂将作为研究 MSP2 低聚物化和纤维组装的机制探针非常有用。