Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, PR China.
Biosens Bioelectron. 2010 Aug 15;25(12):2644-50. doi: 10.1016/j.bios.2010.04.040. Epub 2010 May 4.
Electrodeposition has been so widely used to immobilize biomacromolecules, and it is always an important topic to increase the load and activity of the immobilized biomacromolecules. We report here on a new, simple and rather universal method for the highly efficient immobilization of enzymes by aqueous electrodeposition of enzyme-tethered chitosan (CS) for sensitive amperometric biosensing. Glucose oxidase (GOx) is chosen here to examine the proposed protocol in detail. GOx was crosslinked to CS with low-concentration glutaraldehyde (GA, 0.080 wt%), and the electroreduction of added H(2)O(2) increased the electrode-surface pH and triggered the electrodeposition of a GOx-GA-CS composite film. The GOx-GA-CS electrodeposition was monitored by an electrochemical quartz crystal microbalance and is theoretically discussed based on an electrogenerated base-to-acid titration model. The prepared first-generation enzyme electrode (CS-GA-GOx/Pt(nano)/Au) exhibits a current sensitivity as high as 102 microA mM(-1) cm(-2) at 0.70 V vs SCE, being 13 times that of the CS-GOx/Pt(nano)/Au prepared similarly but without the GOx-CS precrosslinking. UV-vis spectrophotometric determination of the GOx remains in the supernatant liquids after pH-induced CS precipitation suggested a high enzyme load in the GOx-GA-CS film, and amperometric measurements suggested a negligible decrease in the enzymatic activity of GOx after its reaction with the low-concentration GA. Also, the proposed protocol works well for the precrosslinking manner of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysulfosuccinimide activation, the water-electroreduction-triggered CS electrodeposition, the second-generation biosensing mode, a 5.0-microm-radius Pt ultramicroelectrode, and immobilization of alkaline phosphatase for phenyl phosphate biosensing. The proposed protocol of pretethering the target biomacromolecules to the electrodeposition precusor for immobilization of the biomacromolecule at high load/activity is recommended for wide applications.
电沉积已被广泛应用于固定生物大分子,提高固定化生物大分子的负载量和活性一直是一个重要的研究课题。本工作报道了一种通过酶固定化壳聚糖的水相电沉积,用于灵敏安培生物传感的高效固定化酶的新的、简单而通用的方法。本文选择葡萄糖氧化酶(GOx)来详细考察所提出的方案。GOx 与低浓度戊二醛(GA,0.080wt%)交联,加入的 H(2)O(2)的电还原增加了电极表面 pH 值,并引发了 GOx-GA-壳聚糖复合膜的电沉积。通过电化学石英晶体微天平监测 GOx-GA-壳聚糖的电沉积,并根据电生碱滴定模型进行了理论讨论。所制备的第一代酶电极(CS-GA-GOx/Pt(nano)/Au)在 0.70V 相对于 SCE 的电流灵敏度高达 102μA mM(-1) cm(-2),比类似方法制备但没有 GOx-CS 预交联的 CS-GOx/Pt(nano)/Au 高 13 倍。在 pH 诱导壳聚糖沉淀后,上清液中仍可通过紫外可见分光光度法测定 GOx,表明 GOx-GA-壳聚糖膜中具有较高的酶负载量,而安培测量表明 GOx 与低浓度 GA 反应后其酶活性可忽略不计。此外,该方案对于 1-乙基-3-(3-二甲基氨基丙基)碳二亚胺/N-羟基琥珀酰亚胺活化的预交联方式、水还原引发的 CS 电沉积、第二代生物传感模式、5.0μm 半径的 Pt 超微电极以及用于苯膦酸酯生物传感的碱性磷酸酶的固定化均适用。本研究提出的将目标生物大分子预连接到电沉积前体上以高负载/活性固定生物大分子的预连接方案,有望得到广泛应用。