Department of Chemistry and ‡Department of Biology, North Carolina State University , Raleigh, North Carolina 27695, United States.
Anal Chem. 2013 Sep 17;85(18):8780-6. doi: 10.1021/ac4017852. Epub 2013 Aug 26.
Neurotransmission occurs on a millisecond time scale, but conventional methods for monitoring nonelectroactive neurochemicals are limited by slow sampling rates. Despite a significant global market, a sensor capable of measuring the dynamics of rapidly fluctuating, nonelectroactive molecules at a single recording site with high sensitivity, electrochemical selectivity, and a subsecond response time is still lacking. To address this need, we have enabled the real-time detection of dynamic glucose fluctuations in live brain tissue using background-subtracted, fast-scan cyclic voltammetry. The novel microbiosensor consists of a simple carbon fiber surface modified with an electrodeposited chitosan hydrogel encapsulating glucose oxidase. The selectivity afforded by voltammetry enables quantitative and qualitative measurements of enzymatically generated H2O2 without the need for additional strategies to eliminate interfering agents. The microbiosensors possess a sensitivity and limit of detection for glucose of 19.4 ± 0.2 nA mM(-1) and 13.1 ± 0.7 μM, respectively. They are stable, even under deviations from physiological normoxic conditions, and show minimal interference from endogenous electroactive substances. Using this approach, we have quantitatively and selectively monitored pharmacologically evoked glucose fluctuations with unprecedented chemical and spatial resolution. Furthermore, this novel biosensing strategy is widely applicable to the immobilization of any H2O2 producing enzyme, enabling rapid monitoring of many nonelectroactive enzyme substrates.
神经递质的传递发生在毫秒级的时间尺度上,但传统的非电活性神经化学物质监测方法受到缓慢采样率的限制。尽管有巨大的全球市场,但仍然缺乏一种能够在单个记录位点以高灵敏度、电化学选择性和亚秒级响应时间测量快速波动的非电活性分子动力学的传感器。为了解决这一需求,我们使用背景扣除快速扫描循环伏安法,实现了实时检测活体脑组织中动态葡萄糖波动。新型微生物传感器由简单的碳纤维表面组成,表面修饰有电沉积壳聚糖水凝胶,其中包埋有葡萄糖氧化酶。伏安法提供的选择性使我们能够定量和定性地测量酶促产生的 H2O2,而无需额外的策略来消除干扰剂。微生物传感器的葡萄糖灵敏度和检测限分别为 19.4 ± 0.2 nA mM(-1)和 13.1 ± 0.7 μM。它们稳定,即使在偏离生理常氧条件下也是如此,并且对内源性电活性物质的干扰最小。使用这种方法,我们以前所未有的化学和空间分辨率定量和选择性地监测了药理学诱导的葡萄糖波动。此外,这种新的生物传感策略广泛适用于任何 H2O2 产生酶的固定化,能够快速监测许多非电活性酶底物。