Suppr超能文献

一氧化氮与神经元死亡。

Nitric oxide and neuronal death.

机构信息

Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, United Kingdom.

出版信息

Nitric Oxide. 2010 Nov 1;23(3):153-65. doi: 10.1016/j.niox.2010.06.001. Epub 2010 Jun 12.

Abstract

NO and its derivatives can have multiple effects, which impact on neuronal death in different ways. High levels of NO induces energy depletion-induced necrosis, due to: (i) rapid inhibition of mitochondrial respiration, (ii) slow inhibition of glycolysis, (iii) induction of mitochondrial permeability transition, and/or (iv) activation of poly-ADP-ribose polymerase. Alternatively, if energy levels are maintained, NO can induce apoptosis, via oxidant activation of: p53, p38 MAPK pathway or endoplasmic reticulum stress. Low levels of NO can block cell death via cGMP-mediated: vasodilation, Akt activation or block of mitochondrial permeability transition. High NO may protect by killing pathogens, activating NF-kappaB or S-nitro(sy)lation of caspases and the NMDA receptor. GAPDH, Drp1, mitochondrial complex I, matrix metalloprotease-9, Parkin, XIAP and protein-disulphide isomerase can also be S-nitro(sy)lated, but the contribution of these reactions to neurodegeneration remains unclear. Neurons are sensitive to NO-induced excitotoxicity because NO rapidly induces both depolarization and glutamate release, which together activate the NMDA receptor. nNOS activation (as a result of NMDA receptor activation) may contribute to excitotoxicity, probably via peroxynitrite activation of poly-ADP-ribose polymerase and/or mitochondrial permeability transition. iNOS is induced in glia by inflammation, and may protect; however, if there is also hypoxia or the NADPH oxidase is active, it can induce neuronal death. Microglial phagocytosis may contribute actively to neuronal loss.

摘要

NO 及其衍生物可能具有多种作用,以不同的方式影响神经元死亡。高水平的 NO 通过以下方式诱导能量耗竭诱导的坏死:(i) 迅速抑制线粒体呼吸,(ii) 缓慢抑制糖酵解,(iii) 诱导线粒体通透性转换,和/或 (iv) 激活多聚 ADP-核糖聚合酶。或者,如果维持能量水平,NO 可以通过氧化应激激活:p53、p38 MAPK 途径或内质网应激诱导细胞凋亡。低水平的 NO 可以通过 cGMP 介导的:血管舒张、Akt 激活或阻断线粒体通透性转换来阻止细胞死亡。高浓度的 NO 可以通过杀死病原体、激活 NF-kappaB 或 S-亚硝(sy)化半胱天冬酶和 NMDA 受体来保护细胞。GAPDH、Drp1、线粒体复合物 I、基质金属蛋白酶-9、Parkin、XIAP 和蛋白二硫键异构酶也可以被 S-亚硝(sy)化,但这些反应对神经退行性变的贡献尚不清楚。神经元对 NO 诱导的兴奋性毒性敏感,因为 NO 可以迅速诱导去极化和谷氨酸释放,这两者共同激活 NMDA 受体。nNOS 激活(作为 NMDA 受体激活的结果)可能导致兴奋性毒性,可能是通过过氧亚硝酸盐激活多聚 ADP-核糖聚合酶和/或线粒体通透性转换。iNOS 由炎症诱导在神经胶质细胞中表达,并可能具有保护作用;然而,如果存在缺氧或 NADPH 氧化酶活性,它也可以诱导神经元死亡。小胶质细胞吞噬作用可能积极促进神经元丧失。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验