Suppr超能文献

口腔念珠菌属光滑念珠菌的唑类耐药机制的基因芯片和分子分析。

Microarray and molecular analyses of the azole resistance mechanism in Candida glabrata oropharyngeal isolates.

机构信息

Clinical Mycology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.

出版信息

Antimicrob Agents Chemother. 2010 Aug;54(8):3308-17. doi: 10.1128/AAC.00535-10. Epub 2010 Jun 14.

Abstract

DNA microarrays were used to analyze Candida glabrata oropharyngeal isolates from seven hematopoietic stem cell transplant recipients whose isolates developed azole resistance while the recipients received fluconazole prophylaxis. Transcriptional profiling of the paired isolates revealed 19 genes upregulated in the majority of resistant isolates compared to their paired susceptible isolates. All seven resistant isolates had greater than 2-fold upregulation of C. glabrata PDR1 (CgPDR1), a master transcriptional regulator of the pleiotropic drug resistance (PDR) network, and all seven resistant isolates showed upregulation of known CgPDR1 target genes. The altered transcriptome can be explained in part by the observation that all seven resistant isolates had acquired a single nonsynonymous mutation in their CgPDR1 open reading frame. Four mutations occurred in the regulatory domain (L280P, L344S, G348A, and S391L) and one in the activation domain (G943S), while two mutations (N764I and R772I) occurred in an undefined region. Association of azole resistance and the CgPDR1 mutations was investigated in the same genetic background by introducing the CgPDR1 sequences from one sensitive isolate and five resistant isolates into a laboratory azole-hypersusceptible strain (Cgpdr1 strain) via integrative transformation. The Cgpdr1 strain was restored to wild-type fluconazole susceptibility when transformed with CgPDR1 from the susceptible isolate but became resistant when transformed with CgPDR1 from the resistant isolates. However, despite the identical genetic backgrounds, upregulation of CgPDR1 and CgPDR1 target genes varied between the five transformants, independent of the domain locations in which the mutations occurred. In summary, gain-of-function mutations in CgPDR1 contributed to the clinical azole resistance, but different mutations had various degrees of impact on the CgPDR1 target genes.

摘要

DNA 微阵列用于分析 7 例接受造血干细胞移植的患者的口腔假丝酵母菌属分离株,这些患者在接受氟康唑预防治疗时其分离株出现唑类药物耐药。与配对的敏感分离株相比,大多数耐药分离株中 19 个基因的转录谱上调。7 个耐药分离株的 C. glabrata PDR1(CgPDR1)均有超过 2 倍的上调,CgPDR1 是多药耐药(PDR)网络的主要转录调节因子,所有 7 个耐药分离株均显示已知的 CgPDR1 靶基因上调。这种改变的转录组可以部分解释为观察到所有 7 个耐药分离株在其 CgPDR1 开放阅读框中均获得了单个非同义突变。4 个突变发生在调节域(L280P、L344S、G348A 和 S391L),1 个突变发生在激活域(G943S),而另外 2 个突变(N764I 和 R772I)发生在未定义区域。通过整合转化,将一个敏感分离株和 5 个耐药分离株的 CgPDR1 序列导入实验室唑类药物低敏菌株(Cgpdr1 菌株),在相同的遗传背景下研究了唑类药物耐药与 CgPDR1 突变的相关性。当用敏感分离株的 CgPDR1 转化 Cgpdr1 菌株时,该菌株恢复为野生型氟康唑敏感性,但当用耐药分离株的 CgPDR1 转化时则变为耐药。然而,尽管遗传背景相同,5 个转化株之间 CgPDR1 和 CgPDR1 靶基因的上调程度不同,与突变发生的结构域位置无关。总之,CgPDR1 的功能获得性突变导致了临床唑类药物耐药,但不同的突变对 CgPDR1 靶基因的影响程度不同。

相似文献

1
Microarray and molecular analyses of the azole resistance mechanism in Candida glabrata oropharyngeal isolates.
Antimicrob Agents Chemother. 2010 Aug;54(8):3308-17. doi: 10.1128/AAC.00535-10. Epub 2010 Jun 14.
2
Missense mutation in CgPDR1 regulator associated with azole-resistant Candida glabrata recovered from Thai oral candidiasis patients.
J Glob Antimicrob Resist. 2019 Jun;17:221-226. doi: 10.1016/j.jgar.2019.01.006. Epub 2019 Jan 15.
3
Contribution of CgPDR1-regulated genes in enhanced virulence of azole-resistant Candida glabrata.
PLoS One. 2011 Mar 9;6(3):e17589. doi: 10.1371/journal.pone.0017589.
5
Mutations in the CgPDR1 and CgERG11 genes in azole-resistant Candida glabrata clinical isolates from Slovakia.
Int J Antimicrob Agents. 2009 Jun;33(6):574-8. doi: 10.1016/j.ijantimicag.2008.11.011. Epub 2009 Feb 3.
8
The ATP-binding cassette transporter-encoding gene CgSNQ2 is contributing to the CgPDR1-dependent azole resistance of Candida glabrata.
Mol Microbiol. 2008 Apr;68(1):186-201. doi: 10.1111/j.1365-2958.2008.06143.x. Epub 2008 Feb 26.
9
Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies.
Mol Microbiol. 2006 Aug;61(3):704-22. doi: 10.1111/j.1365-2958.2006.05235.x. Epub 2006 Jun 27.
10
Expression Patterns of ABC Transporter Genes in Fluconazole-Resistant Candida glabrata.
Mycopathologia. 2017 Apr;182(3-4):273-284. doi: 10.1007/s11046-016-0074-8. Epub 2016 Oct 15.

引用本文的文献

1
Leveraging synthetic genetic array screening to identify therapeutic targets and inhibitors for combatting azole resistance in .
Microbiol Spectr. 2025 Sep 2;13(9):e0252224. doi: 10.1128/spectrum.02522-24. Epub 2025 Aug 11.
3
Similarities and distinctions in the activation of the Pdr1 regulatory pathway by azole and non-azole drugs.
mSphere. 2024 Dec 19;9(12):e0079224. doi: 10.1128/msphere.00792-24. Epub 2024 Nov 18.
4
6
Solid and Suspension Microarrays for Microbial Diagnostics.
Methods Microbiol. 2015;42:395-431. doi: 10.1016/bs.mim.2015.04.002. Epub 2015 May 14.
7
Functional genetic characterization of stress tolerance and biofilm formation in () via a novel CRISPR activation system.
mSphere. 2024 Feb 28;9(2):e0076123. doi: 10.1128/msphere.00761-23. Epub 2024 Jan 24.
8
Characterizing Candida glabrata Pdr1, a Hyperactive Transcription Factor Involved in Azole Resistance.
Methods Mol Biol. 2023;2658:169-179. doi: 10.1007/978-1-0716-3155-3_11.
9
Multiple genome analysis of clinical isolates renders new insights into genetic diversity and drug resistance determinants.
Microb Cell. 2022 Oct 13;9(11):174-189. doi: 10.15698/mic2022.11.786. eCollection 2022 Nov 7.

本文引用的文献

1
Regulation of multidrug resistance in pathogenic fungi.
Fungal Genet Biol. 2010 Feb;47(2):94-106. doi: 10.1016/j.fgb.2009.08.002. Epub 2009 Aug 7.
2
Gain of function mutations in CgPDR1 of Candida glabrata not only mediate antifungal resistance but also enhance virulence.
PLoS Pathog. 2009 Jan;5(1):e1000268. doi: 10.1371/journal.ppat.1000268. Epub 2009 Jan 16.
3
A nuclear receptor-like pathway regulating multidrug resistance in fungi.
Nature. 2008 Apr 3;452(7187):604-9. doi: 10.1038/nature06836.
4
The ATP-binding cassette transporter-encoding gene CgSNQ2 is contributing to the CgPDR1-dependent azole resistance of Candida glabrata.
Mol Microbiol. 2008 Apr;68(1):186-201. doi: 10.1111/j.1365-2958.2008.06143.x. Epub 2008 Feb 26.
5
Epidemiology of invasive candidiasis: a persistent public health problem.
Clin Microbiol Rev. 2007 Jan;20(1):133-63. doi: 10.1128/CMR.00029-06.
6
Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies.
Mol Microbiol. 2006 Aug;61(3):704-22. doi: 10.1111/j.1365-2958.2006.05235.x. Epub 2006 Jun 27.
8
Sterol uptake in Candida glabrata: rescue of sterol auxotrophic strains.
Diagn Microbiol Infect Dis. 2005 Aug;52(4):285-93. doi: 10.1016/j.diagmicrobio.2005.03.001.
9
Isolation of cholesterol-dependent Candida glabrata from clinical specimens.
Diagn Microbiol Infect Dis. 2005 May;52(1):35-7. doi: 10.1016/j.diagmicrobio.2004.12.006.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验